Annual Monitoring Report

Monitoring Year 1 of 7

FINAL

Project Name: 601 East Stream Restoration NCDMS Contract No.:004925 NCDMS Project No.: 95756

Union County, NC Data Collected: September 2015 – November 2015 Date Submitted: November 2015

Submitted to: North Carolina Division of Mitigation Services DEQ-DMS, 1652 Mail Service Center Raleigh NC 27699-1652

Prepared for:

302 Jefferson Street, Suite 110 Raleigh, North Carolina 27605

Prepared by:

balance through proper planning

37 Haywood Street, Suite 100 Asheville, NC 28801

Contents

1.0	Project Summary	1
2.0	Methods	3
3.0	References	3
Appen	dix A General Tables and Figures	5
Appen	dix B Visual Assessment Data	.17
Appen	dix C Vegetation Plot Data	. 39
Appen	dix D Stream Geomorphology Data	.51
Appen	dix E Hydrologic Data	101

1.0 PROJECT SUMMARY

The 601 East Stream Restoration Site is located in Union County, approximately 13 miles south of Monroe, NC (Figure 1). The site encompasses 12.8 acres of formerly agricultural land and includes portions of Tanyard Branch, a tributary of Lanes Creek. The Site is located within the Yadkin River Basin, United States Geological Survey (USGS) 14-digit Hydrologic Unit 03040105081010 and the North Carolina Division of Water Resources (NCDWR) sub-basin 03-04-14. The drainage area of Tanyard Branch at the downstream end of the site is 0.56 square miles (354 acres). Land use within the watershed is predominately used for agriculture with the remaining land use composed of low density residential and forested areas.

The project goals and objectives listed below were established in the 601 East Mitigation Plan and outlined in the "601 East Stream Restoration Baseline Monitoring Document and As-Built Baseline Report Final" (Resource Environmental Solutions, LLC 2015).

The project goals address the stressors identified in the Targeted Local Watershed and include the following:

- Reduce water quality stressors originating in and around the project area affecting the project reaches and downstream watercourses, which include population of the Savannah Lilliput (Toxolasma pullus) and the Carolina Creekshell (Vilosa vaughiana), both listed species of concern. Specifically involving:
 - Reducing turbidity and sediment loading
 - Input reductions of nutrients and crop protection chemicals
 - Improving thermoregulation
- Improving aquatic habitat quality and diversity within project reaches
- Improving recruitment of instream fine organic matter (FOM) in the near term and both FOM and large wood in the long term
- Improving terrestrial habitat diversity and quality in the vicinity of project reaches
- Establishing habitat continuity between the reach headwaters and Lanes Creek
- Improving flood flow attenuation and floodplain interaction

The project goals will be addressed though the project objectives:

- Restore or enhance reach pattern, dimension and profile
- Stabilize eroding stream banks
- Install stream structures to maintain grade and improve bed form complexity
- Implement BMP detention devices on lateral agricultural drainages
- Install a diverse native riparian buffer
- Removal of invasive exotic plant species
- Secure a protective conservation easement and establish fencing as needed

Monitoring Year 1 (MY1) data was collected from September to November 2015. Monitoring activities included visual assessment of all reaches and the surrounding easement, 20 permanent photo stations, ten permanent vegetation monitoring plots, eighteen cross-sections, and nine pebble counts.

Generally, visual assessment of the project as a whole indicates that the project is performing as desired. Summary tables and permanent photo station photos associated with the visual assessment are located in Appendix B. With the exception of a few bare area, totaling 0.08 acres, vegetation is becoming well established throughout the easement (Figure 2 and Table 6). These bare areas consist mainly of small ditches that have migrated into the easement, each coinciding with existing ditches from outside the easement. No rip rap or grade control structures were observed, however RES will coordinate to make repairs in the coming monitoring year. Bare areas associated with ditches will be matted and seeded and grade control will be installed as necessary to stabilize channels within the easement. At the downstream portion of Reach 2, a large plot of cattails was noted below XS-12, creating a monoculture within the wetland area. Additionally, an area of honeysuckle and privet were noted at the upper end of Reach 2, totaling 0.16 acres. Treatment is scheduled for spring 2016. Planted stems were difficult to assess with dense herbaceous vegetation covering the stems throughout most of the easement, however areas of sparse vegetation were noted during MY1 (Table 6 and Figure 2). These conditions are typical of a new mitigation site until the vegetation becomes established following construction activities. These areas will continue to be monitored in subsequent site visits. Encroachment was noted on Reaches 3 and 4, where an ATV had driven across the easement and tractors had turned into the easement while planting adjacent fields. RES is currently coordinating with the landowners and will be installing additional signage marking the easement in spring of 2016.

Visual assessment of the stream was performed to document signs of instability, such as eroding banks, structural instability, or excessive sedimentation. Only a few stream problem areas were noted during visual assessment (Table 5 and Figure 2). Structures are intact and performing as designed. The project approach on the ephemeral channel at the upstream end of the project—Reach A—was to install a series of energy dissipating structures to provide vertical stability and sediment settling capacity within the reach. Visual assessment of this reach indicate that structures are performing as designed, stabilizing incision and capturing sediment from the upstream contributing area. No indications of new incision were observed during the assessment. Thus far, the settling areas are not in need of maintenance; however they will be assessed during upcoming site visits and maintained if needed.

Monitoring of permanent vegetation monitoring plots (n = 10) was completed during September 2015. Summary tables and photographs associated with MY1 monitoring are located in Appendix C. MY1 monitoring data indicates that nine of the ten vegetation monitoring plots are on track to meet the MY3 interim success criteria of 320 stems per acre (Table 7 and Table 9). Stem densities ranged from 283 to 850 stems per acre with a mean of 469 stems per acre across all plots. When volunteer stems are included, the annual mean increases to 498 stems per acre. A total of 14 species were documented within the monitoring plots.

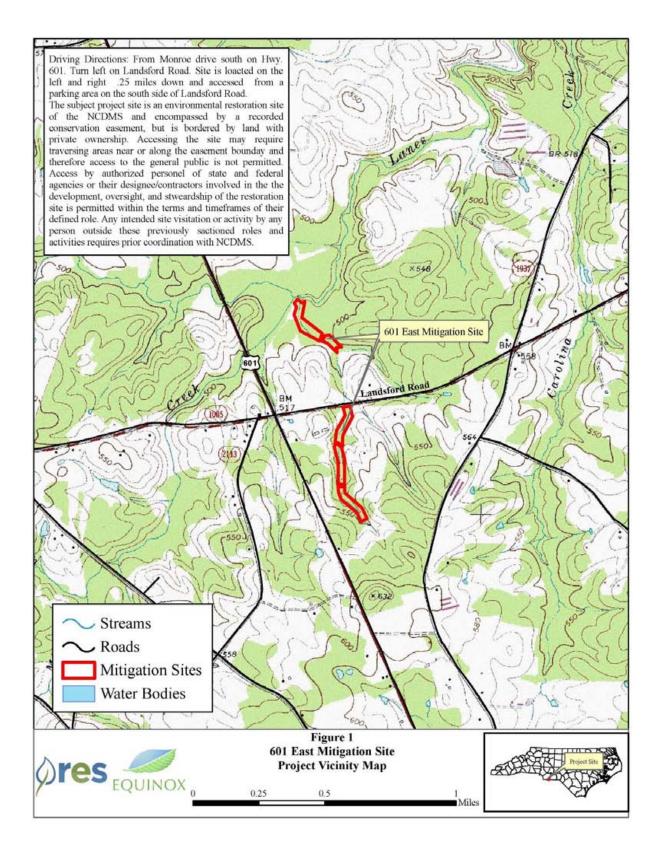
Geomorphic data for MY1 was collected during September 2015. Summary tables and cross-section plots related to stream morphology are located in Appendix D. With the exception of XS-13, noticeable change in the cross-section data between MY0 and MY1 were limited to pools (Appendix B, Table 11a). With the exception of XS-5, all pool cross sections showed an increase in bankfull width, ranging from 0.3 feet to 1.5 feet. Pebble counts indicate that six of the nine riffle cross sections sampled fall within the medium to very coarse gravel range. The other three cross sections indicate that silt deposition is occurring in riffles in the downstream portion of Reach 1 and Reach 2, with a D₅₀ falling within the silt particle size class. This can be attributed to an herbaceous layer forming in the channel and trapping silt runoff from the adjacent field as well as low flows between the baseline and MY1 monitoring events, which allows for little sediment transport. Substrate will be monitored in future years for shifts in composition. The bank pin arrays indicate that no erosion is taking place in the pools with the exception of the downstream end of XS-7. Field data indicated that there was localized erosion around the downstream pin at XS-7, at a rate of 0.02 ft/year (Table 12). This likely can be attributed to the bent bank pin, and is not cause for concern.

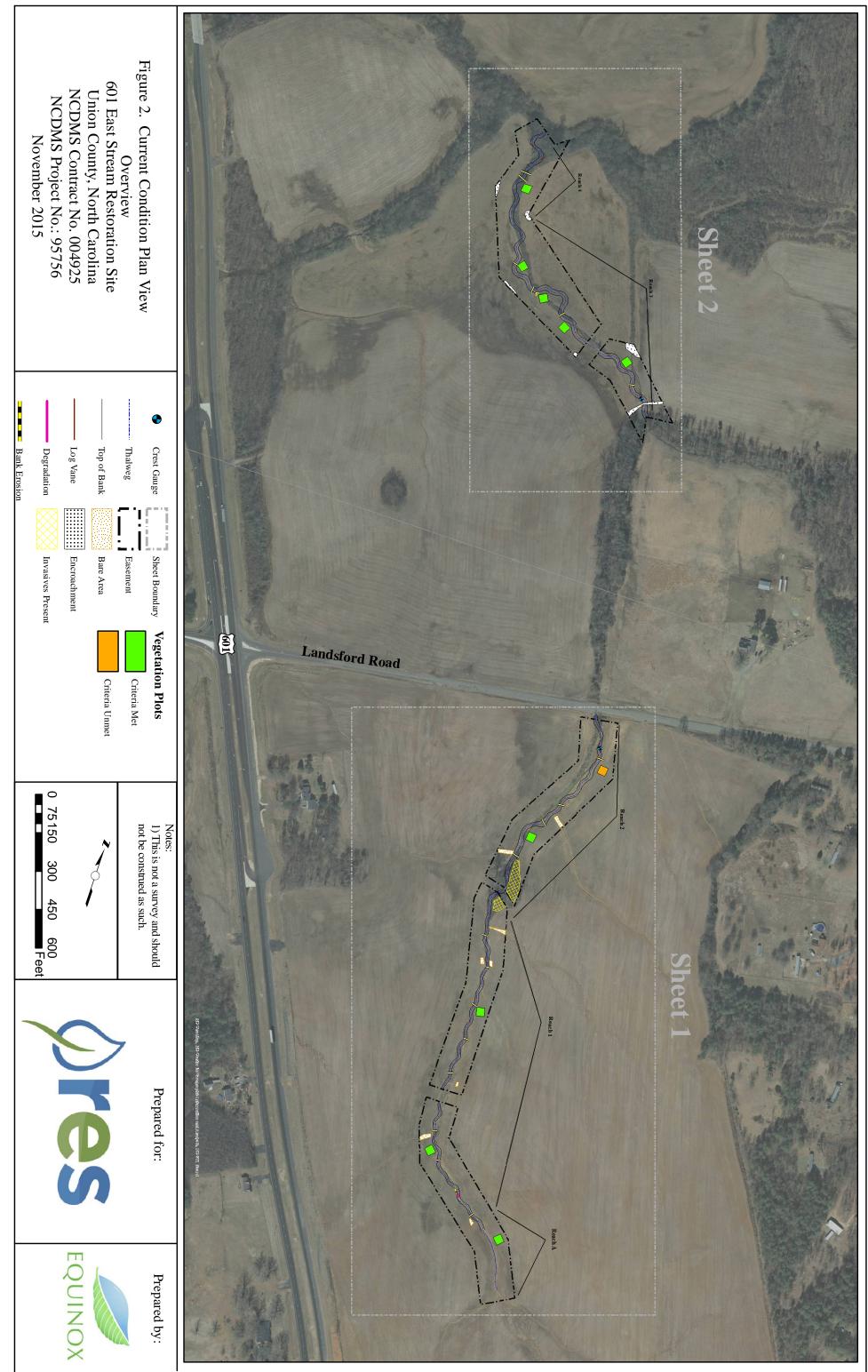
Summary information/data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on NCDMS' website. All raw data supporting the tables and figures in the appendices is available from NCDMS upon request.

2.0 METHODS

For MY1, visual assessment was performed during the morph and vegetation collection event. For future monitoring years, visual assessment of the project will be performed at the beginning and end of the monitoring year. Permanent photo station photos were collected during the initial visual assessment during leaf-off conditions. Additional photos of vegetation or stream problem areas were documented with photographs throughout the project area.

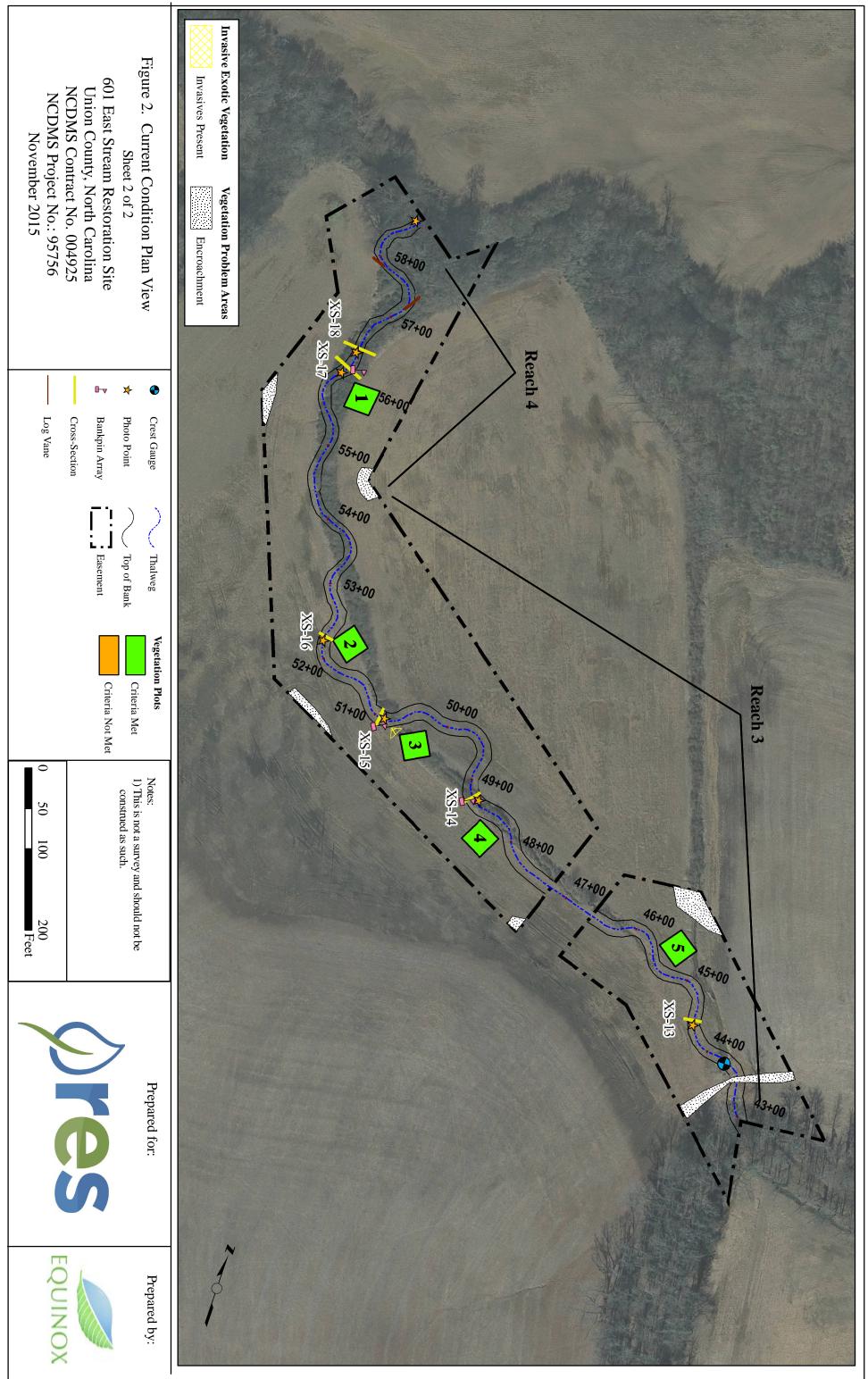
Geomorphic measurements were taken during low flow conditions using a Nikon NPR 332 Total Station. Three-dimensional coordinates associated with cross-section and profile data were collected in the field and geo-referenced (NAD83 State Plane feet FIPS 3200). Morphological data was limited to 18 cross-sections. Survey data was imported into CAD, ArcGIS, and Excel for data processing and analysis. Channel substrate was characterized using a Wolman Pebble Count outlined in the Harrelson et al (1994) and processed using Microsoft Excel.


Vegetation success is being monitored using 10 permanent monitoring plots. Vegetation monitoring follows the CVS-EEP Level 1 Protocol for MY1 and will follow Level 2 Protocol for monitoring years 2-7 for Recording Vegetation, version 4.2 (Lee et al. 2008) and includes analysis of composition and density of planted species. Data is processed using the CVS data entry tool. In the field, the four corners of each plot were permanently marked with rebar and photos of each plot are taken from the origin each monitoring year.


Precipitation data was reported from the NCCRONOS station number 315771 in Monroe, NC. Two crest gauges were installed on the mainstem, one upstream of Lansford Road in Reach 2 and another downstream of Lansford Road in Reach 3. During quarterly visits to the site, the height of the corkline was recorded and cross-referenced with known bankfull elevations at each crest gauge.

3.0 <u>REFERENCES</u>

- Resource Environmental Solutions, LLC. 2015. 601 East Stream Restoration, Baseline Monitoring Document and As-Built Baseline Report Final, Union County, North Carolina. NCEEP Project No. 95756
- Harrelson, Cheryl, C. Rawlins and J. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Rocky Mountain Forest and Range Experiment Station. USDA Forest Service. Fort Collins, Colorado
- Lee, M.T.,R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. <u>http://cvs.bio.unc.edu/methods.htm</u>; accessed November 2008.


Appendix A General Tables and Figures

601 East Stream Restoration Project NCDMS Project No. 95756 Monitoring Year 1 of 7

							roject Compo 501 East Stre		litigation Cre on Site	dits					
							Mitiga	tion Credits							
		Stream		R	iparian Wetland		Non-ripa	ian Wetland		Buffer	1	Nitrogen Nutrient Offset		Phosphor Nutrient O	
Туре		R	RE	R		RE	R	RE							
Totals		3671	43												
							Project	Component	s						
Project Co or- Reach			Stationing/Loc	tion	Existing F	ootage/Acreage	e	Approach	(PI, PII etc.)	Restoration -or- Re Equivalen		Restoration Footage or	r Acreage	Ratio	litigation Credit
Reach A l	Ephemeral		5+45 - 7+6)		215				Buffer establishment sediment import r		215		1:5	43
Intern			7+60 - 11+	0		336]	P1	R		350		1:1	350
Read Intern	ch 1b nittent		11+10 - 11+	95		85		Enhar	ncement	E1		85		1 :1.5	57
Reach 1c	Perennial		11+95 - 13+	47		136		Enhar	ncement	El		155		1 :1.5	103
	Perennial		13+97 - 22+	00		790		1	P1	R		803		1:1	803
	ch 2a ennial		22+00 - 22+	45		40		Enhar	ncement	El		45		1 : 1.5	30
	ch 2b ennial		22+75 - 24+)2		125		Enhar	ncement	El		127	1:1.5		85
Reach 2c	Perennial		24+02 - 31+	32		669]	P1	R		730	730 1 :		730
Reach 3a	Perennial		42+92 - 46+	51		tive channel elic channel		1	P1	R		369		1:1	369
Reach 3b	Perennial		47+21 - 53+	70	502' r	elic channel		1	P1	R		649		1:1	649
Reach 4 P	erennial		53+70 - 58+	55	470' r	elic channel			P3	R		495		1:1	495
							Compone	ent Summati							
Restoratio	on Level			ream ar feet)	·	Wetland (acres		No	n-riparian Wet (acres)	land	Buffer (square feet)	τ	Upland (acres)		Mitigation Credits
					Riverine	Non-	Riverine								
Restoratio				396		-									3396
Enhancem Enhancem				12											275
Enhancem				12											215
Creation															
Preservati	on/Other			15				1							43
HQ Preser								1							
							BM	PElements							
Element					Location	1			Pu	rpose/Function			Notes		
FB, LS, S,	FS				Ephemeral Cl 5+45 – 7+			Slowing the		or settling and filtering e	xcess sediment	Sediment exp	ected from futur	e degradation	upstream
BMP Eler BR = Bior		; SF = Sand Filter;	SW = Stormwater	Wetland; WDP = Wet Deter			nd; FS = Filter	Strip; S = Gr	assed Swale; L	S = Level Spread; NI = N	Natural Infiltrat	ion Area; FB = Forested Bu	uffer		

Table 2. Project Activity ar601 East Stream Re		
Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	May 2013	Jan 2014
Final Design – Construction Plans	Sept 2013	Jan 2014
Construction	-	Dec 2014
Containerized, bare root and B&B plantings	-	Jan 2015
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	Feb 2015	Feb 2015
Year 1 Monitoring	Nov 2015	Nov 2015
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		

Tabl	e 3. Project Contact Table
601 Ea	st Stream Restoration Site
Designer	Ward Consulting Engineers, P.C. (WCE)
	4805 Green Road, Suite 100, Raleigh, NC 27616
Primary project design POC	Becky Ward (919) 870-0526
Construction Contractor	Wright Contracting
	P.O. Box 545, Siler City, NC 27344
Construction contractor POC	Joseph Wright (919) 663-0810
Planting Contractor	H & J Forest Services
	1416 Ocean Boulevard, Holly Ridge, NC 28445
Planting contractor POC	(910) 512-6754
Construction Survey Contractor	Turner Land Survey, PLLC
	3719 Benson Drive, Raleigh, NC 27629
Survey contractor POC	Elizabeth Turner (919) 827-0745
Seeding Contractor	Wright Contracting
	P.O. Box 545, Siler City, NC 27344
Construction contractor POC	Andrew Dimmette (919) 663-0810
Seed Mix Sources	Green Resource - Raleigh, NC
	As Purchased by EBX (919) 829-9909 x 213
Nursery Stock Suppliers	Arbor Gen - Blenheim, SC
	(800) 222-1290
	NC Forest Service Nursery - Goldsboro, NC
	(888) 628-7337
[Baseline] Monitoring Performers	Ward Consulting Engineers, P.C.
	4805 Green Road, Suite 100, Raleigh, NC 27616
Stream Monitoring POC	Rachael Zigler - WCE - (919) 870-0526
Vegetation Monitoring POC	Chris Sheats - The Cantena Group - (919) 732-1300
Monitoring Performers (MY1)	Equinox
2015	37 Haywood Street, Suite 100
	Asheville, NC 28801
Stream Monitoring POC	Hunter Terrell (828) 253-6856
Vegetation Monitoring POC	Hunter Terrell (828) 253-6857

and longitude) Proje it) tage of Impervious Area n	Union Co 34° 50' 21 ct Wate rshed Summary Piedmont Yadkin Ri USGS Hyd	n tream Restoration Site inty 62" N, 80° 25' 32.26"N Information	12.78 3040105081010 3/4/2014 361.33 2%
Projective for the second seco	601 East S Union Co 34° 50' 21 ct Wate rs hed Summary Piedmont Yadkin Ri USGS Hyd	tream Restoration Site inty 62" N, 80° 25' 32.26"N Information ver Basin	3040105081010 3/4/2014 361.33
Projective for the second seco	Union Co 34° 50' 21 ct Wate rshed Summary Piedmont Yadkin Ri USGS Hyd	111ty 62" N, 80° 25' 32.26"N Information ver Basin	3040105081010 3/4/2014 361.33
Projective for the second seco	34° 50' 21 ct Wate rs hed Summary Piedmont Yadkin Ri USGS Hyd	62" N, 80° 25' 32.26"N Information ver Basin	3040105081010 3/4/2014 361.33
Projective for the second seco	ct Watershed Summary Piedmont Yadkin Ri USCS Hyd	Information ver Basin	3040105081010 3/4/2014 361.33
Projective for the second seco	ct Watershed Summary Piedmont Yadkin Ri USCS Hyd	Information ver Basin	3/4/2014 361.33
it) tage of Impervious Area	Piedmont Yadkin Ri USGS Hyd	ver Basin	3/4/2014 361.33
) tage of Impervious Area	Yadkin Ri USGS Hyt		3/4/2014 361.33
) tage of Impervious Area	USGS Hy		3/4/2014 361.33
) tage of Impervious Area		nonga ona i uga	3/4/2014 361.33
tage of Impervious Area	2.01.01.07		361.33
tage of Impervious Area	2.01.01.07		
	2.01.01.07		1/0
		Annual Row Crop Rotation	
	Reach Summary Inform		
Reach 1			Reach 4
			Relic Channel, 495 LF Restored
	· · · · · · · · · · · · · · · · · · ·		VIII
			359
	155		339
	33.5	33.5	33.5
Felenmai. 55.5			
13-17-40-(1)	13-17-40-(1)	13-17-40-(1)	13-17-40-(1)
G4/B4/C4b	C4/E4/DA	C4/G4	G4
G	C/DA	G	G
0	CDA	0	0
ntermittent. Tatum gravelly silty			
inconnictent. Facult gravery sity	Cid channery silt loam Tatum		
Perrenial: Cid channery silt loam	•	Chewacla silt loam	Chewacla silt loam
eremai. Cit chamery sit four	graveny she loan		
Well Drained	Moderately Well Drained	Somewhat Poorly Drained	Somewhat Poorly Drained
NL. II. L.	NL II	N H L.	NT
•			Non Hydric 1.25%
			N/A
			IN/A
Agriculture along upstream	1.5 1		
	Keu Maple, Sweetguill, Easter		
			Canopy species include Red
-			Maple, Hackberry, Willow oak,
·	•	e 1	and Sweetgum. The presence of Chinese privet outcompete any
<u>^</u>	· .		
	and duckweed.	sinuo and hero layer.	shrub and herb layer.
and Diackberry.			
00/	500(5% of Japanese stilt grass, 80%	900/ CL:
0%	50% of Parrot feather	Chinese privet, and kudzu	80% Chinese privet
P	G4/B4/C4b G ntermittent: Tatum gravelly silty Perrenial: Cid channery silt loam	1418, 1393 LF Restored 906, 902 LF Restored II II 109 135 Intermittent: 19.5 33.5 Perennial: 33.5 33.5 13-17-40-(1) 13-17-40-(1) G C/DA G C/DA termittent: Tatum gravelly silty Cid channery silt loam Perrenial: Cid channery silt loam Moderately Well Drained Well Drained Moderately Well Drained Non Hydric Non Hydric 2% 0.84% N/A N/A Agriculture along upstream Canopy species include Willow The remaining stream buffer within this reach is composed of Willow Oak, Red Maple, River Birch, Black Willow, Elderberry, and Blackberry. Wetland A is composed of Catails, spike rush arrow-arum and duckweed.	1418, 1393 LF Restored906, 902 LF Restored1080, 1018 LF RestoredIIIIVIII109135333Intermittent: 19.533.533.5Perennial: 33.533.533.513-17-40-(1)13-17-40-(1)13-17-40-(1)G4/B4/C4bC4/E4/DAC4/G4GC/DAGntermittent: Tatum gravelly siltyCid channery silt loam, Tatum gravelly silt loamChewacla silt loamVerenial: Cid channery silt loamCid channery silt loamChewacla silt loamWell DrainedModerately Well DrainedSomewhat Poorly DrainedNon HydricNon HydricNon Hydric2%0.84%0.67%N/AN/AN/AAgriculture along upstreamCanopy species include Willow Red Maple, Sweetgum, EasternCanopy species include Red Maple, Hackberry, willow Oak, and Blackberry.0%50% of Parrot feather5% of Japanese stilt grass, 80%

Table 4 con't. Pro601 I	v	Information and A estoration Site	ttributes					
Wetla	nd Summar	y Information						
Parameters		Wetland 1						
Size of Wetland (acres)	0.43 ac							
Wetland Type (non-	Non Tidal Fra	eshwater Marsh						
riparian, riparian riverine,	Non-Tidal Fic	Silwater Warsh						
Mapped Soil Series	Cid channery	Silt Loam						
Drainage class	Moderately V Drained	Vell Drained to So	mewhat Poorly					
Soil Hydric Status	Non-Hydric							
Source of Hydrology	Tanyard Bran adjacent runo	ch headwaters, gr ff	oundwater, and					
Hydrologic Impairment	filling the cha	rmed from accumu nnel resulting in a gh the wetland.	-					
Native vegetation community	Herbaceous-Vegetation is domninated by herbaceous vegetation such as Cattail (<i>Typha</i> <i>latifolia</i>), Bulrush (<i>Scirpus cyperinus</i>), Common Rush (<i>Juncus effuses</i>). Some tree species such as Black Willow (<i>Salix nigra</i>), and Red Maple (<i>Acer rubrum</i>) are present in the wetland margins.							
Percent composition of exotic invasive vegetation	(Miriophyllu	vasive Parrot Feath m aquaticum) is d ne wetland where t	ominant					
Reg	ulatory Con	siderations						
Regulation	Applicable?	Resolved?	Supporting Documentation					
Waters of the United States-Section 404	Yes	SAW 2013- 00265; EEP IMS #95756						
Waters of the United States – Section 401	Yes	DWR# 14-0547						
Endangered Species Act	No	Yes	ERTR					
Historic Preservation Act	No	Yes	ERTR					
Coastal Zone								
Management Act (CZMA)/Costal Area Management Act (CAMA)	nagement Act A)/Costal Area No N/A nagement Act							
FEMA Floodplain Compliance	No	N/A						
Essential Fisheries Habitat	No	N/A						

Appendix B Visual Assessment Data

		Table 5. Visual Stream Mo 601 East Stream Res Assessed Lo	storation Si	te - Reach						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			1	15	99%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	32	32			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	33	33			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	33	33			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	33	33			100%			
	0	2. Thalweg centering at downstream of meander bend (Glide).	33	33			100%	-		
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			1	15	99%	0	0	97%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	1	15	99%	N/A	N/A	N/A
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : Mean Bankfull Depth Ratio ≥ 1.6 . Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

		Table 5 cont'd. Visual Stream 601 East Stream Res Assessed L	storation Si	te - Reach		ż				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0 0		100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	16	16			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	17	17			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	17	17			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	17	17			100%			
	4. That we git ostition	2. Thalweg centering at downstream of meander bend (Glide).	17	17			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
				Totals	0	0	100%	N/A	N/A	N/A
3. Engineered S tructures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A			N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

		Table 5 cont'd. Visual Stream601 East Stream ResAssessed Le	storation Si	te - Reach		:				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	18	18			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	18	18			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	18	18			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	18	18			100%			
	4. Thatweg Tostuon	2. Thalweg centering at downstream of meander bend (Glide).	18	18			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
	1			Totals	0	0	100%	N/A	N/A	N/A
3. Engineered S tructures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	N/A	N/A	-		N/A			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	N/A	N/A			N/A			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	N/A	N/A			N/A			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	N/A	N/A			N/A			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	N/A	N/A			N/A			

		Table 5 cont'd. Visual Stream601 East Stream ResAssessed L	storation Si	te - Reach		ż				
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			0	0	100%			
	(Riffle and Run Units)	2. <u>Degradation</u> - Evidence of downcutting.			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate.	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6).	9	9			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	9	9			100%			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run).	9	9			100%			
	4. That we git ostuon	2. Thalweg centering at downstream of meander bend (Glide).	9	9			100%			
2. Bank	1. Scoured / Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	N/A	N/A	N/A
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	N/A	N/A	N/A
	1			Totals	0	0	100%	N/A	N/A	N/A
3. Engineered S tructures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2	-		100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>NOT</u> exceed 15%.	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ M ax Pool Depth : Mean Bankfull Depth Ratio \geq 1.6. Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 6. Vegetation Condition Assessment 601 East Stream Restoration Site Planted Acreage 12.8 Easement Acreage 12.8											
Vegetation Category	Definitions	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage						
1. Bare Areas	Very limited cover of both woody and herbaceous material.	N/A	0	0.08	1%						
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	N/A	0	0.00	0%						
	•	Totals	0	0.08	1%						
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	N/A	0	0.00	0%						
		Cumulative Totals	0	0.08	1%						
Vegetation Category	Definitions	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage						
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	Cross Hatch (Red - Dense/Yellow - Present)	0	0.16	1%						
5. Easement Encroachment Areas	Areas or points (if too small to render as poly gons at map scale).	N/A	0	0.12	1%						

Project Reach 1 – Permanent Photo Station 1 Top of Project – Looking Downstream

Project Reach 1 – Permanent Photo Station 2 Cross Section 1 – Looking Downstream

Project Reach 1 – Permanent Photo Station 3 Cross Section 2 – Looking Downstream

Project Reach 1 – Permanent Photo Station 4 Cross Section 3 – Looking Downstream

Project Reach 1 – Permanent Photo Station 5 Cross Section 4 – Looking Downstream

Project Reach 1 – Permanent Photo Station 6 Cross Section 5 – Looking Downstream

Project Reach 1 – Permanent Photo Station 7 Cross Section 6 – Looking Downstream

Project Reach 1– Permanent Photo Station 8 Cross Section 7 – Looking Downstream

Project Reach 1 – Permanent Photo Station 9 Cross Section 8 – Looking Downstream

Project Reach 2 – Permanent Photo Station 10 Cross Section 9 – Looking Downstream

Project Reach 2 – Permanent Photo Station 11 Cross Section 10 – Looking Downstream

Project Reach 2 – Permanent Photo Station 12 Cross Section 11 – Looking Downstream

Project Reach 2 – Permanent Photo Station 13 Cross Section 12 – Looking Downstream

Project Reach 3 – Permanent Photo Station 14 Cross Section 13 – Looking Downstream

Project Reach 3 – Permanent Photo Station 15 Cross Section 14 – Looking Downstream

Project Reach 3 – Permanent Photo Station 16 Cross Section 15 – Looking Downstream

Project Reach 3– Permanent Photo Station 17 Cross Section 16 – Looking Downstream

Project Reach 4– Permanent Photo Station 18 Cross Section 17 – Looking Downstream

Project Reach 4 – Permanent Photo Station 19 Cross Section 18 – Looking Downstream

Project Reach 4– Permanent Photo Station 20 Bottom of Project – Looking Upstream

Problem Area Photos

Project Reach 1 – Bare Area 8+50 Left Descending Bank

Project Reach 1 – Headcut/ Degradation 9+25

Project Reach 1 – Bank Erosion 9+50

Project Reach 1 – Ditch/ Bare Area 12+00 Left Descending Bank

Project Reach 1 – Ditch/ Bare Area 20+75 Right Descending Bank

Project Reach 2 – Bare Area/ Ditch 24+25 Left Descending Bank

Project Reach 3 – Encroachment 43+50

Project Reach 3 – Encroachment 45+50

Project Reach 3 - Encroachment 47+50 Left Descending Bank

Project Reach 3 – Encroachment 51+50 Left Descending Bank

Appendix C Vegetation Plot Data

Table 7	. Vegetatio	n Plot Criteria Attainment
6	01 East Stre	eam Restoration Site
	Vegetation	
Vegetation	Survival	Tract Mean
Plot ID	Threshold	Tract Weam
	Met?	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	90%
6	No	90%
7	Yes	
8	Yes	
9	Yes	
10	Yes	

	e 8. CVS Vegetation Plot Metadata 01 East Stream Restoration Site
Report Prepared By	Drew Alderman
Date Prepared	9/21/2015 10:48
^	
database name	Equinox-2015-A-601East.mdb
database location	Z:\ES\NRI&M\EBX Monitoring\601_East\MY1-2015\Data\Veg
computer name	FIELD-PC
file size	44625920
DESCRIPTION	N OF WORKSHEETS IN THIS DOCUMENT
	Description of database file, the report worksheets, and a summary
Metadata	of project(s) and project data.
	Each project is listed with its PLANTED stems per acre, for each
Proj, planted	year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each
Proj, total stems	year. This includes live stakes, all planted stems, and all
	List of plots surveyed with location and summary data (live stems,
Plots	dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences
Damage	and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species
Planted Stems by Plot and Spp	for each plot; dead and missing stems are excluded.
Project Code	PROJECT SUMMARY
Project Code project Name	95756 601 East
Description	UUI Last
River Basin	Yadkin-Pee Dee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	10
Sumpica 1 1015	10

Stems per ACRE 486 486 486 850 850 850 567 8					Salix nigra Black Willow	Quercus velutina Black Oak	Quercus rubra Northern Red Oak	Quercus phellos Willow Oak	Quercus michauxii Swamp Ch	Quercus Oak	Populus deltoides var. deltd Eastern Cottonwood	Platanus occidentalis var. Sycamore, Plane-tree	Nyssa sylvatica Blackgum	Liriodendron tulipifera var. Tulip-tree, Yellow Poplar, Whitewood	Fraxinus pennsylvanica Green Ash	Cephalanthus occidentalis Common Buttonbush	Betula nigra River Birch	Asimina triloba Pawpaw	Scientific Name				
Stem	S	si							Swamp Chestnut Oak 7		ottonwood								Common Name				
Stems per ACRE	Species count	size (ACRES)	size (ares)	Stem count	Tree	Tree	Tree	Tree	Tree	Tree		Tree	Tree	Tree	Tree	Shrub	Tree	Tree		Species			
486 486 4	6 6	0.02	1	12 12		1 1	1 1	1 1				6 6		1 1			2 2		PnoLS P-all T	Plot 1			
486 850 850	6 5 5	0.02	1	12 21 21		1 1 1	1	1	4 4		1 1	6 13 13		1 2 2			2		PnoLS P-all	Plot 2			
850 567	5 3	0		21 14		1			4	1	1	13 10		2 3					T PnoLS P-all	P		Т	
850 850 3	5 5	0.02	1	21 21	<u>5</u> 5					1	2 2	10 10		33					Т	Plot 3		able 9. Planted T	
364 364 364	3 3 3	0.02	1	6 6 6								3 3 3		3 3 3			3 3 3		Т	Plot 4		601 East Strea	
364 364	4 4	0.02	1	6 6								4 4	2 2	2 2	1 1				PnoLS P-all T	Plot 5	Current Plot	Table 9. Planted Total Stem Counts (Species by Plot with Annual Means) 601 East Stream Restoration Site	
364 283 283	4 4	0.02	1	9 7					1	4		4	2 1	2	1	1			PnoLS P-all	Plot 6	Current Plot Data (MY1 2015)	ot with Annual N äte	
3 283 445	4 4 6			7 7 11				1	1 1 4	4 1			1 1	3		1 1 1	1		T PnoLS		5)	(Teans)	
445 445	6 6	0.02	1	11 11				1 1	4 4	1 1				33		1 1	1 1		Т	Plot 7			
324 324 324	4 4	0.02	1	8				2 2 :		1 1		3					2 2 :		PnoLS P-all T	Plot 8			
4 364 364	4 3 3	0.02	1	6 6 8				2		1 1		3			2 2		2 6 6		PnoLS P-all T	Plot 9			
364 647 0	3 7	0.02	1	9 16				1	1	1 1		8		2	2	2	6	1	PnoLS	Plot 10			
647 647 469	7 7 1	2		16 16 116				1 1	1 1 1	1		8 8 47		2 2 1		2 2 .	1	1 1	T Pno				
59 498 498	13 14 14	0.25	10	6 123 123	5 5	2 2 2	1 1 1	5 5 5	10 10 10	6 6 6	1 3 3	7 47 47	3 3 3	16 16 16	3 3 3	4 4 4	14 14 14	1 1 1		MY1 (2015)	Annual Means		
800 828	11 11	0.25	10	200 207 207				26 26 26	20 20 20	12 12	1 8	58 58 58	18 18	30 30 30	3 3	6 6	24 24 24	2 2	PnoLS P-all T	MY0 (2015)	leans		

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Annual		
Annual Monitoring Report		
oring I	E	
Report	Equinox	

601 East - Vegetation Monitoring Plot 1 September 3, 2015

601 East - Vegetation Monitoring Plot 2 September 3, 2015

601 East - Vegetation Monitoring Plot 3 September 3, 2015

601 East - Vegetation Monitoring Plot 4 September 3, 2015

601 East - Vegetation Monitoring Plot 5 September 3, 2015

601 East - Vegetation Monitoring Plot 6 September 3, 2015

601 East - Vegetation Monitoring Plot 7 September 3, 2015

601 East - Vegetation Monitoring Plot 8 September 3, 2015

601 East - Vegetation Monitoring Plot 9 September 3, 2015

601 East - Vegetation Monitoring Plot 10 September 3, 2015

Appendix D Stream Geomorphology Data

											Data Sum	•													
	-	-			T					ation Site	- Reach 1		-				1			r					
Parameter	Gauge	R	egional Cu	rve		F	Pre- Existin	g Condition	IS			Re	eference R	each(es) D	ata			Design			A	s-built / 1	Baseline		
Dimension and Substrate - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)				<u> </u>	7	21		60			7.42	9.88		11.61				10		8.82	11.45	10.77	15.13	2.23	8
Floodprone Width (ft)					8	60		101			18.51	26.43		33.59			22	28	35	40.00	74.38	69.00	154.00		8
Bankfull Mean Depth (ft)					0.2	0.5		0.9			0.68	0.79		0.97				0.72		0.50	0.81	0.77		0.26	8
Bankfull Max Depth (ft)					0.7	1		1.4			1.28	1.78		2.16				1.2		0.87	1.53	1.54	2.07	0.49	8
Bankfull Cross Sectional Area (ft ²)					8	1		1.4			0.97	1.39		1.82				7.2		4.45	9.27	8.85	14.07	3.48	8
Width/Depth Ratio					1.1	27		47			8.14	12.95		16.82				13.9		8.56	15.45	14.89	25.33	5.40	8
Entrenchment Ratio					0.4	2.4		9.5			2.02	2.4		3.24			2.2	2.8	3.5	3.30	6.90	5.62	16.40	4.19	8
Bank Height Ratio					0.4	0.34		2			0.97	1.39		1.82			2.2	2.0	5.5	0.93	0.98	1.00	1.00	0.03	8
d50 (mm)			-	-		0.34		2			0.97	1.39		1.62				1		0.93	0.98	1.00	1.00	0.05	0
Profile			-	-																1					
Riffle Length (ft)			-	-	2.7	24.9		107.3			5.97	11.26		26.78			14	23	90	10.04	22.09	18.54	95.26	14.52	32
Riffle Slope (ft/ft)					0.0007	1.7		40			0.015	0.031		26.78			0.021	0.036	0.046	0.015		0.032		0.012	32
Pool Length (ft)					9.03	1.7		56.86			13.6	20.13		31.74			14	22	29	13.38		21.23		0.012	32
Pool Length (It) Pool Max depth (ft)					9.05	2.4		3.9			13.6	1.83		2.2			14	2.2	29	13.38	24.28	21.23	3.15	0.38	33
Pool Spacing (ft)					15.5	50		128			23.5	36.2		57.4			24	36.7	58		44.63			0.38	32
i i			1	1	15.5	- 50		128			25.5	30.2		57.4			24	50.7	30	51.42	44.05	40.18	110.51	10.87	32
Pool Volume (ft ³)																									
Pattern																									
Channel Beltwidth (ft)					10	19.6		25			13	17.33		20			13	18	21	13		18	21		
Radius of Curvature (ft)					14.5	84		118			16	33		53			16	32.1	52	16		32.1	52		
Rc: Bankfull width (ft/ft)					1.7	4.6		11.5			4.35	6.04		8.9			4.3	6.1	8.9	4.3		6.1	8.9		
Meander Wavelength (ft)					36	96		240			43	59.67		88			43	61	89	43		61	89		
Meander Width Ratio					0.5	0.94		1.7			1.32	1.76		2.03			1.3	1.8	2.1	1.3		1.8	2.1		
Substrate, bed and transport parameters																									
Ri%/Ru%/P%/G%/S%					45.5%	1	53.6%	[0.0	7%	26.8%	17.2%	47.9%	8.1%	0.0	70%				44.3%	1	55.7%		0.0	06
SC%/Sa%/G%/C%/B%/Be%					4.1%	27.3%	67.6%	1.0%	0.0%	0.0%	20.070	17.270	47.970	0.170	0.0	570				44.570	1	55.170		0.0	70
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)					2.71	6.72	10.56	24.89	38.23	0.070													_		_
Reach Shear Stress (competency) lb/f ²					2.71	0.72	10.50	24.07	36.23																_
Max part size (mm) Mobilized at bankfull																									_
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters							0.1	166					0	144											
Drainage Area (SM)							0.	166					0.	144						-					_
Impervious cover estimate (%)							C1/D	4/04					D	1/04				D4/C4h				D 4/C			_
Rosgen Classification								4/C4b					B4	4/C4				B4/C4b				B4/C	4D		
Bankfull Velocity (fps)								.2										3.2							
Bankfull Discharge (cfs)			_	_	I			24 125						78											
Valley length (ft)								-			<u> </u>							1420				140			
Channel Thalweg length (ft)								179						40				1438				143			
Sinuosity (ft)								04					1	.16				1.17				1.1			
Water Surface Slope (Channel) (ft/ft)							0.0	196										0.017				0.01	-		
BF slope (ft/ft)																		0.017				0.01	1		
Bankfull Floodplain Area (acres)																		_			_	_			
Proportion over wide (%)																									
Entenchment Class (ER Range)											╂───													_	
Incision Class (BHR Range)											╂───													_	
BEHI VL%/L%/M%/H%/VH%/E%											┨────							_			_	_			
Channel Stability or Habitat Metric											<u> </u>														
Biological or Other											I														

	•												•									-			
	Ŧ	T								m Restor	ation Site									T					
Parameter	Gauge	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												Baseline											
Dimension and Substrate - Riffle		TT	ш	Fa	Min	Maan	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)		LL	UL	Eq.			wieu		3D	п			Meu		3D	п	IVIIII		wiax				24.18	3.56	4
Floodprone Width (ft)																	48		135				168.00	50.05	4
Bankfull Mean Depth (ft)																	40		155				1.31	0.32	4
Bankful Mean Depth (ft) Bankful Max Depth (ft)						1																	2.53	0.58	4
Bankfull Cross Sectional Area (ft ²)						1																	25.26	6.75	4
Width/Depth Ratio						1																	33.10	8.07	4
Entrenchment Ratio																	26		10				8.39	2.54	4
Bank Height Ratio																	3.0	/.0	10				1.00	0.05	4
d50 (mm)					0.9	0.34		1.7			1.1	1.5		1.7				1		0.90	0.90	0.90	1.00	0.05	4
Profile																									
Riffle Length (ft)					10.9	24.9		10.7			4.03	14.18		13.61			14	23	90	12.13	23.38	18.96	50.22	10.70	18
Riffe Slope (ft/ft)							-		-						-	-							0.04	0.01	17
Pool Length (ft)																							74.26	14.68	17
Pool Max depth (ft)																	14		29				4.03	0.59	17
Pool Spacing (ft)				-													29		95				110.28	20.48	17
					20	50		512			29	40		04			30	51	65	32.94	55.57	47.00	110.28	20.40	17
Pool Volume (ft ³)																									
Pattern																		10							
Channel Beltwidth (ft)												-						-				-	65		
Radius of Curvature (ft)																							58		
Rc: Bankfull width (ft/ft)																							4.8		
Meander Wavelength (ft)																	-	-				-	97		
Meander Width Ratio					0.9	2.4		3.2			2.1	3.3		5.4			2.1	3.3	5.4	2.1		3.3	5.4		
~ • • •																									
Substrate, bed and transport parameters					12.6%	1	07.40/	1		207	27.20/	2.70/	61.50/	7.00		0/				20.5%	1	CO 50/	[0.0	20/
Ri%/Ru%/P%/G%/S%						22.70/		0.00/			27.2%	3.7%	61.5%	7.6%	0	1%				39.5%		60.5%		0.0	/%
SC%/Sa%/G%/C%/B%/Be%																									
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)					0.90	4.57	8.92	24.42	47	.93															
Reach Shear Stress (competency) lb/f2																									
Max part size (mm) Mobilized at bankful																									
Stream Power (transport capacity) W/m2																									
Additional Reach Parameters																									
Drainage Area (SM)							0.1	212					0).5											
Impervious cover estimate (%)																									
Rosgen Classification							C4/E	4/DA					(24				C4/E4				C4	/E4		
Bankfull Velocity (fps)							2	.1										2.6							
Bankfull Discharge (cfs)							2	27																	
Valley length (ft)							8	30					3	78											
Channel Thalweg length (ft)								179					4	40				945					45		
Sinuosity (ft)							1.	01					1	1				1.34				1.	34		
Water Surface Slope (Channel) (ft/ft)																		0.0069				0.0	069		
BF slope (ft/ft)																		0.0069				0.0	069		
Bankfull Floodplain Area (acres)																									
Proportion over wide (%)																									
Entenchment Class (ER Range)																									
Incision Class (BHR Range)																									
BEHI VL%/L%/M%/H%/VH%/E%																									
Channel Stability or Habitat Metric																									
Biological or Other																									

									Table 1	0. Baselin	e Stream I	Data Sumn	nary												
					-					m Restor	ationSite -	Reach 3 (-			-					
Parameter	Gauge	R	legional Cu	rve		1	Pre- Existin	g Condition	IS			Re	ference R	each(es) D	ata			Design				As-built	Baseline		
					10	1			an	T	1.0	1.14			60	r		1						an	
Dimension and Substrate - Riffle Bankfull Width (ft)		LL	UL	Eq.	Min 65	Mean 15.7	Med	Max 29	SD	n	Min 10	Mean 12.2	Med	Max 14.3	SD	n	Min	Med 17	Max	Min 15.86	Mean 17.69	Med 17.66	Max 19.58	SD 1.52	n 4
Floodprone Width (ft)					150	200		29			42	77		14.5			150	200	300	75.00	231.25	250.00	350.00	1.52	4
Bankfull Mean Depth (ft)					0.5	0.9		2001.20			0.92	1.12		1.34			150	1.18	300	0.79	1.26	1.21	1.84	0.54	4
Bankfull Mean Depth (ft) Bankfull Max Depth (ft)					1.28	1.7		19.4			1.2	1.12		2.2				2		1.58	2.51	2.52	3.44	1.06	4
Bankfull Cross Sectional Area (ft ²)					10.5	14.5		31			12.2	13		13.4				21		12.85	22.79	21.12	36.08	11.26	4
Width/Depth Ratio					10.5	14.3		16.5			7.7	11.3		15.4				14.4		12.83	15.88	15.27	22.36	5.98	4
Entrenchment Ratio					9.6	17.3		4			2.9	6.5		8.6			8.8	14.4	17.6	4.73	12.74	13.27	19.90	7.31	4
Bank Height Ratio					1.3	2.2		4			2.9	1.5		8.0 1.7			0.0	11.8	17.0	0.99	12.74	13.17	19.90	0.01	4
d50 (mm)					1.5	2.2		1.7			1.1	1.5		1.7				1		0.99	1.00	1.00	1.00	0.01	4
Profile																					-				
Riffle Length (ft)			1		0.97	10.58		23.77			4.03	14.18		13.61			15	25	103	10.12	24.10	16.77	110.25	22.07	19
Riffle Slope (ft/ft)			1		0.97	0.2		0.6			0.006	0.02		0.05			0.008	0.018	0.03	0.00	0.02	0.02	0.04	0.01	17
Pool Length (ft)			1		7.83	20.87	1	64.91		t	18.51	32.11		58.03	1	1	25	35	50	27.38	35.18	35.18	49.71	6.68	17
Pool Max depth (ft)			1		1.8	2.7		3.4			1.7	2.47		3.1			25	3.4	50	1.93	2.91	2.98	3.50	0.36	18
Pool Spacing (ft)					8	48		125			29	48		84			39	66	117	41.11	58.55	54.44	137.89	20.86	18
Pool Volume (ft ³)					0	10		120				10		0.			57	00	,		00.00	5	15/107	20.00	10
Pattern																									
Channel Beltwidth (ft)					13	41		58			25	40		65			35	56	92	35		56	92		
Radius of Curvature (ft)			1		22.5	49.7		78			20	31		65			27	43	63	27		43	63		
Rc: Bankfull width (ft/ft)			1		1.4	3.2		4.9			3.2	3.9		4.8			1.6	2.5	3.7	1.6		2.5	3.7		
Meander Wavelength (ft)					32	57		89			61	84		97			87	119	134	87		119	134		
Meander Watteniger (17)			1		1.3	2.6		3.7			2.1	3.3		5.4			2.1	3.3	5.4	2.1		3.3	5.4		
					- 10							0.0										0.0			
Substrate, bed and transport parameters																									
Ri%/Ru%/P%/G%/S%					38.0%	1	62.0%		0.	0%	27.2%	3.7%	61.5%	7.6%	0.	0%				43.0%		57.0%		0.0)%
SC%/Sa%/G%/C%/B%/Be%					4.0%	51.9%	44.1%	0.0%	0.0%	0%															
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)					0.8	3.5	5.4	12.8	19.6																
Reach Shear Stress (competency) lb/f ²					0.0	5.5	5.1	12.0	17.0																
Max part size (mm) Mobilized at bankfull																	-								
Stream Power (transport capacity) W/m ² Additional Reach Parameters																									
							0	52					0	.5											
Drainage Area (SM) Impervious cover estimate (%)							0.	24			 		0												
Rosgen Classification							C4	-G4					F 4	/C4				C4				0	24		
Bankfull Velocity (fps)							-	.2					124				1	3		-			3		
Bankfull Discharge (cfs)								i5										5					5		
Valley length (ft)							-	0																	
Channel Thalweg length (ft)																		1064				10)64		
Sinuosity (ft)							1	05			1		1	.2				1.2					.2		
Water Surface Slope (Channel) (ft/ft)							1.	05			1		1	.2			1	0.0056		1		0.0			
BF slope (ft/ft)											1						1	0.0056		1			056		
Bankfull Floodplain Area (acres)																	1	0.0000		1		0.0			
Proportion over wide (%)																									_
Entenchment Class (ER Range)																									
Incision Class (BHR Range)																									
BEHI VL%/L%/M%/H%/VH%/E%																									
Channel Stability or Habitat Metric											1														
Biological or Other											1														

								Table	10. Baseli	ine Strean	n Data Sun	nmary													
										oration Sit	te - Reach		-												
Parame te r	Gauge	R	egional Cu	rve		F	Pre- Existin	g Conditior	15			Re	eference R	each(es) D	ata			Design			А	s-built /	Baselin	e	
Dimension and Substrate - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Med	Max	Min	Mean	Med	Max	SD	n
Bankfull Width (ft)				-1	5.2	11.6		20	~~		7.42	9.88		11.61				16		14.93	15.92	15.92	16.91	1.40	2
Floodprone Width (ft)					16	20		25			18.51	26.43		33.59			30	35	40	30.39	36.19	36.19		8.21	2
Bankfull Mean Depth (ft)					0.76	0.9		1.1			0.68	0.79		0.97			50	0.98	-10	0.98	1.37	1.37	1.76	0.55	2
Bankfull Max Depth (ft)					0.70	1.2		1.33			1.28	1.78		2.16				1.8		1.49	2.11	2.11	2.72	0.87	2
Bankfull Cross Sectional Area (ft ²)					12.3	1.2		16			0.97	1.39		1.82				15.7		14.70	22.25	22.25	29.81	10.68	2
Width/Depth Ratio				_	7	15		16			8.14	12.95		1.82				15.7		9.60	12.38	12.38	29.81	3.93	2
Entrenchment Ratio					1.4	12.9		2.2			2.02	2.4		3.24			1.9	2.2	2.5	2.04	2.26	2.26	2.48	0.32	2
Bank Height Ratio					3.3	3.5		4.2			0.97	1.39		1.82			1.9	1	2.3	1.00	1.10	1.10	1.20	0.32	2
d50 (mm)					3.5	3.5		4.2			0.97	1.39		1.82				1		1.00	1.10	1.10	1.20	0.14	2
Profile																									
Riffle Length (ft)					0.79	10.58		23.7			5.97	11.26		26.78			15	23	103	15.84	20.829	18.18	28.96	4.7764	- 0
Riffle Length (ft) Riffle Slope (ft/ft)					0.79	0.02		0.06	ł	<u> </u>	0.015	0.031	ł	0.05			0.021	0.036	0.03	0.018		18.18		4.7764	9
Pool Length (ft)					7.83	20.7		64.91	ł	<u> </u>	13.6	20.13	ł	31.74			14	22	42	30.82	35.01	35.78	38.85	3.1243	9
Pool Length (ft) Pool Max depth (ft)					2	20.7		3.2	ł	ł	13.6	20.13	ł	2.2			14	2.2	42	30.82	2.8154	35.78 2.753	38.85	3.1243 0.3909	9
Pool Max depth (ft) Pool Spacing (ft)					12	2.5		55	ł	ł	23.5	36.2	ł	57.4			38	59	93	49.77		2.755		6.2441	9
					12	29		55			23.5	30.2		57.4			38	59	93	49.77	56.111	54.805	69.26	0.2441	8
³ Pool Volume (ft ³)																									
Pattern																									
Channel Beltwidth (ft)					12	32		82			13	17.33		20			21	28	32	21		28	32		
Radius of Curvature (ft)					18	34.9		61			16	33		53			26	52	84	26		52	84		
Rc: Bankfull width (ft/ft)					1.6	3		5.3			4.35	6.04		8.9			162	3.25	5.25	162		3.25	5.25		
Meander Wavelength (ft)					30	56		113			43	59.67		88			69	97	142	69		97	142		
Meander Width Ratio					1.1	2.8		7.2			1.32	1.76		2.03			1.32	1.76	2.03	1.32		1.76	2.03		
Substants, had and transport nonemators																									
Substrate, bed and transport parameters Ri%/Ru%/P%/G%/S%					10.00/	1	80.1%	1	0	0%	26.90/	17.2%	47.9%	8.1%	0	00/				39.1%	1	65.6%	1	0.0	0/
SC%/Sa%/G%/C%/B%/Be%					19.9%		80.1%		0.	0%	26.8%	17.2%	47.9%	0.1%	0.	0%				39.1%		05.0%		0.0	70
																				-					
d16/d35/d50/d84/d95/di ^p /di ^{sp} (mm)																									
Reach Shear Stress (competency) lb/f ²																									
Max part size (mm) Mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Drainage Area (SM)							0.	56					0.	144											
Impervious cover estimate (%)																									
Rosgen Classification							G	34					B4	/C4				B4				E	4		
Bankfull Velocity (fps)							4	4										3.27				3.	27		
Bankfull Discharge (cfs)							5	5																	
Valley length (ft)													3	78											
Channel Thalweg length (ft)														40				465					65		
Sinuosity (ft)							1.	04					1.	.16				1.13				1.	13		
Water Surface Slope (Channel) (ft/ft)																		0.0114				0.0	114		
BF slope (ft/ft)															-			0.0114				0.0	114		
Bankfull Floodplain Area (acres)																									
Proportion over wide (%)																									
Entenchment Class (ER Range)															-										
Incision Class (BHR Range)																									
BEHI VL%/L%/M%/H%/VH%/E%																									
Channel Stability or Habitat Metric																									
Biological or Other																									

							Table		/Ionito Dimens	0					-	ology S ons)	ummar	y													
								6)1 East	t Stre	am I	Restor	ration	Site	- Rea	ch 1															
			Cros	ss-Sect Pool	ion 1					Cro	oss-Se Rif	ection 2 fle	2					Cros	s-Sect Pool	ion 3						Cros	s-Sect Riffle				
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6 MY7	Base	MY1	MY2	MY	3 MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Record Elevation (datum) Used	544.82	544.82						540.40	540.40							537.87	537.87							533.69	533.69						
Bankfull Width (ft)	13.6	15.1						15.1	14.7							9.4	10.6							8.8	9.1						
Floodprone Width (ft)	45.0	>45						77.0	>77							154.0	>154							75.0	>75						
Bankfull Mean Depth (ft)	1.0	0.9						0.6	0.5							0.9	0.8							0.5	0.5						
Bankfull Max Depth (ft)	2.1	2.2						1.2	1.2							1.8	1.7							0.9	0.9						
Bankfull Cross Sectional Area (ft2)	14.1	13.7						9.0	8.0							8.7	8.6							4.5	4.8						
Bankfull Width/Depth Ratio	13.2	16.6						25.3	27.0							10.2	13.0							17.5	17.1						
Bankfull Entrenchment Ratio	10.3	>3						9.3	>5.2							14.9	>14.6							15.9	>8.3						
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0							1.0	1.0							0.9	1.0						
Cross Sectional Area between End Pins (ft ²)	23.0	21.5						14.3	13.4							14.6	13.3							8.6	4.7						
d50 (mm)	-	-						-	8.3							-	-							-	22.0						
			Cros	ss-Sect Pool	ion 5					Cro	oss-Se Rif	ection 6 fle	5					Cros	s-Sect Pool	ion 7						Cros	s-Sect Riffle				
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6 MY7	Base	MY1	MY2	MY	3 MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Record Elevation (datum) Used	530.49	530.49						528.11	528.11							525.02	525.02							522.48	522.48						
Bankfull Width (ft)	12.9	12.1						11.3	11.3							10.3	11.4							10.1	8.8						
Floodprone Width (ft)	61.0	>61						80.0	>80							63.0	>63							40.0	>40						
Bankfull Mean Depth (ft)	1.0	0.9						0.6	0.6							1.2	1.0							0.6	0.6						
Bankfull Max Depth (ft)	2.0	1.8						1.3	1.3							2.0	2.0							1.0	1.0						
Bankfull Cross Sectional Area (ft ²)	12.8	11.0						6.6	6.6							12.3	11.2							6.2	5.6						
Bankfull Width/Depth Ratio	13.0	13.2						19.3	19.5							8.6	11.5							16.6	13.9						
Bankfull Entrenchment Ratio	17.42	>5.1						9.7	>7.1							10.7	>5.5							10.9	>4.5						
Bankfull Bank Height Ratio	0.9	1.0						1.0	1.0							1.0	1.0							1.0	1.0						
Cross Sectional Area between End Pins (ft ²)	20.5	16.4						16.7	13.3							24.9	16.3							11.4	7.5						
d50 (mm)	-	-						-	26.0							-	-							-	0.062						

-Information Unavailble

			Cro	oss-Se	ction)	Table 1		(Dime	nsio ast S	toring I onal Par Stream I ross-Sec	amet Resto	ers orati	- Cros	s-Se	ctions)	logy Sı	ummar Cross		on 11						Cross	s-Secti	on 12			
				Rif	-						Poo								Riffle				.				Pool				
Dimension	Base	MY1	MY2	MY	3 MY4	4 MY5	MY6 MY	7 Base	MY1	M	72 MY3	MY4	MY	5 MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Record Elevation (datum) Used	517.50	517.50						516.22	516.22	2						515.16	515.16							513.68	513.68						
Bankfull Width (ft)	24.2	24.3						19.2	19.7							15.5	15.8							20.0	20.6						
Floodprone Width (ft)	62.0	>62						132.0	>132							73.0	>73							168.0	>168						
Bankfull Mean Depth (ft)	0.7	0.7						1.3	1.2							0.6	0.5							1.1	1.0						
Bankfull Max Depth (ft)	1.5	1.4						2.5	2.6							1.5	1.3							2.5	2.4						
Bankfull Cross Sectional Area (ft2)	17.7	16.5						25.3	24.4							9.4	8.6							21.3	21.4						
Bankfull Width/Depth Ratio	33.1	35.6						14.6	16.0							25.5	28.9							18.8	19.9						
Bankfull Entrenchment Ratio	5.8	>2.6						11.7	>6.7							7.1	>4.6							7.0	>8.1						
Bankfull Bank Height Ratio	1.0	1.0						1.0	1.0							0.9	1.0							0.9	1.0						
Cross Sectional Area between End Pins (ft ²)	30.4	22.3						44.9	41.0							28.4	18.8							37.3	31.3						
d50 (mm)	-	0.062						-	-							-	0.062							-	-						

- Information Unavailable

						Та	able	11a (cont'd	. Mor	itor	ing	Data	a - D	imeı	nsion	al M	orpholo	ogy Su	mma	ry												
									(D	ime ns	iona	l Pa	ram	eter	s - C	ross	Sect	ions)															
									60	1 East	Stre	eam	Re	stor	ation	Site	- Rea	ach 3															
			Cros	s-Sect	tion 13	3					Cr	oss-S	Secti	on 14	1					Cros	s-Sec	tion 1	5					Cros	s-Sect	ion 16	5		
				Riffle	e							I	Pool								Poo	l							Riffle	e			
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY.	2 M	Y3 N	/IY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY5	MY6	MY7	MY5
Record Elevation (datum) Used	497.88	497.88							495.50	495.50								494.42	494.42							493.73	493.73						
Bankfull Width (ft)	15.9	16.9							17.6	18.4								19.6	21.1							17.7	17.5						1
Floodprone Width (ft)	75.0	>75							350.0	>350								350.0	>350							150.0	>150						
Bankfull Mean Depth (ft)	0.8	0.8							1.6	1.5								1.8	1.6							0.8	0.7				1		I
Bankfull Max Depth (ft)	1.6	1.7							3.4	3.1								3.4	3.3							1.6	1.6				1		I
Bankfull Cross Sectional Area (ft2)	12.8	13.6							28.2	28.0								36.1	34.4							14.1	12.9						1
Bankfull Width/Depth Ratio	19.6	21.0							11.0	12.0								10.6	13.0							22.4	23.8						1
Bankfull Entrenchment Ratio	8.8	>4.4							12.8	>19.1								5.6	>16.6							7.9	>8.5						1
Bankfull Bank Height Ratio	1.0	1.0							1.0	1.0					_			1.0	1.0							1.0	1.0						1
Cross Sectional Area between End Pins (ft ²)	21.5	15.5							34.2	14.9								39.7	36.2							18.9	16.5						
d50 (mm)	-	20.0							-	-								-	-							-	31.0						

- Information Unavailable

Table 11a	cont'd.	Moni	toring	g Dat	a - D	ime n	siona	l Mo	rpholo	gy Su	mmar	y				
	(Di	mensio	onal F	Paran	ne te ra	s - Ci	ross-l	Section	ons)							
	601	East S	Strea	m Re	stora	ation	Site -	Rea	ch 4							
			Cros	s-Sec	tion 1'	7					Cros	ss-Sec	tion 1	8		
				Pool	l							Riff	le			
Dimension	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Record Elevation (datum) Used	489.11	489.11							490.01	490.01						
Bankfull Width (ft)	16.9	17.2							14.9	14.6						
Floodprone Width (ft)	42.0	>42							30.4	>31						
Bankfull Mean Depth (ft)	1.8	1.7							1.0	1.0						
Bankfull Max Depth (ft)	2.7	2.9							1.5	1.6						
Bankfull Cross Sectional Area (ft ²)	29.8	29.1							14.7	14.5						
Bankfull Width/Depth Ratio	9.6	10.2							15.2	14.6						
Bankfull Entrenchment Ratio	2.5	>2.4							2.0	>2.1						
Bankfull Bank Height Ratio	1.2	1.1							1.0	1.0						
Cross Sectional Area between End Pins (ft ²)	99.9	99.7							86.2	71.1						
d50 (mm)	-	-							-	47.0						

- Information Unavailable

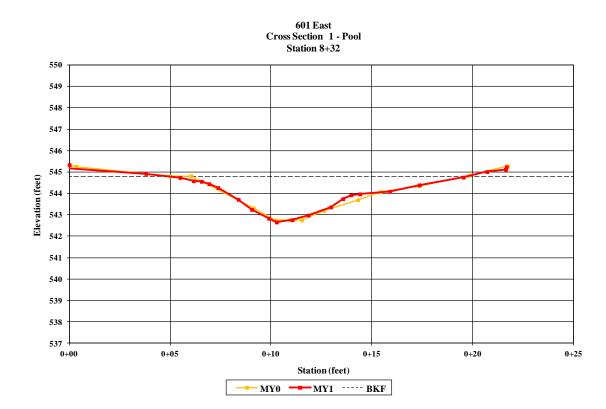
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	assification Length (ft) nuosity (ft) Nope (ft/ft) Nope (ft/ft)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ ter \end{tabular} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1.3 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter Bascinel MY-1 MY-2 MY-3 MY-3 MY-4 Main Mean Man Man Man
---	---	---	--	--	---------	--	--

¹ Based on riffle and pool dimensions ² Based solely on riffle dimensions

61

			Table 11b cont'd.	Table 11b cont'd. Monitoring Data - Stream Reach]	Reach Data Summary			
Parameter	Baseline ¹	MY - 1 ²	MY-2	MY-3	MY - 4	MY - 5	9 - YM	MY - 7
Dimension & Substrate - Riffle	Min Mean Med Max SD n	Min Mean Med Max SD	n Min Mean Med Max SD	n Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n
Bankfull Width (ft)	15.9 17.7 17.7 19.6 1.5 4	16.9 17.2 17.2 17.5 0.4	2					
Floodprone Width (ft)	75.0 231.3 250.0	53.0	2					
Bankfull Mean Depth (ft)	0.8 1.3 1.2 1.8 0.5 4	0.7 0.8 0.8 0.8 0.1	2					
Bankfull M ax Depth (ft)	1) 1.6 2.5 2.5 3.4 1.1 4	0.7 0.8 0.8 0.8 0.1	2					
Bankfull Cross-Sectional Area (ft ²)	12.8	12.9 13.3 13.3 13.6 0.5	2					
Width/Depth Ratio	o 10.6 15.9 15.3 22.4 6.0 4	21.0 22.4 22.4 23.8 2.0	2					
Entrenchment Ratio	o 4.7 12.7 13.2 19.9 7.3 4	4.4 6.5 6.5 8.5 2.9	2					
Bank Height Ratio	o 1.0 1.0 1.0 1.0 0.0 4	1.0 1.0 1.0 0.0	2					
Profile								
Riffle Length (ft)	0 10.1 24.1 16.8 110.3 22.1 19							
Riffle Slope (ft/ft)	0.00 0.018 0.015 0.041 0.011 17							
Pool Length (ft)	(i) 27.4 35.2 35.2 49.7 6.7 18							
Pool M ax Depth (ft)) 1.9 2.9 3.0 3.5 0.4 18							
Pool Spacing (ft) 41.1) 41.1 58.5 54.4 137.9 20.9 18							
Pattern								
Channel Belt Width (ft)	:) 35.0 - 56.0 92.0							
Radius of Curvature (ft)) 27.0 - 43.0 63.0							
Rc: Bankfull Width (ft/ft)) 1.6 - 2.5 3.7							
M eander Wavelength (ft)) 87.0 - 119.0 134.0							
M eander Width Ratio	o 2.1 - 3.3 5.4							
Additional Reach Parameters								
Rosgen Classification								
Channel Thalweg Length (ft)	1064							
Sinuosity (ft)	1.2							
Water Surface Slope (Channel) (ft/ft)								
Bankfull Slope (ft/ft)	0.0056							
Ri% / Ru% / P% / G% / S% 43.0%	6 43.0% - 57.0%							

² Based solely on riffle dimensions								
			Table 11b cont'd. M 6(Table 11b cont'd. Monitoring Data - Stream Reac 601 East - Reach 4 (495 feet)	ach Data Summary)			
Parameter	Baseline ¹	MY-1 ²	MY-2	MY-3	MY - 4	MY - 5	MY-6	7 - YM
Dimension & Substrate - Riffle N	Min Mean Med Max SD n	Min Mean Med Max SD n	1 Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n	Min Mean Med Max SD n
Bankfull Width (ft) 1	14.9 15.9 15.9 16.9 1.4 2	14.6 14.6 14.6 14.6 14.6 N/A 1						
	30.4 36.2 36.2 42.0 8.2 2	31.0 31.0 31.0 31.0 N/A 1						
Bankfull Mean Depth (ft)	1.0 1.4 1.4 1.8 0.5 2	1.0 1.0 1.0 1.0 N/A 1						
	2.1 2.1 2.7 0.9	1.6 1.6 1.6 1.6 N/A 1						
	14.7 22.3 22.3 29.8 10.7 2	14.5 14.5 14.5 14.5 14.5 N/A 1						
Width/Depth Ratio	9.6 12.4 12.4 15.2 3.9 2	15.6 15.6 15.6 15.6 N/A 1						
	2.0 2.3 2.3 2.5 0.3 2	2.1 2.1 2.1 2.1 2.1 N/A 1						
Bank Height Ratio	1.0 1.1 1.1 1.2 0.1 2	1.0 1.0 1.0 1.0 N/A 1						
Profile								
Riffle Length (ft) 1	15.8 20.8 18.2 29.0 4.8 9							
Riffle Slope (ft/ft) 0.018	0.018 0.027 0.030 0.038 0.007 9							
Pool Length (ft) 3	30.8 35.0 35.8 38.8 3.1 9							
	2.0 2.8 2.8 3.4 0.4 9							
Pool Spacing (ft) 4	49.8 56.1 54.8 69.3 6.2 8							
Pattern								
Channel Belt Width (ft) 2	21.0 - 28.0 32.0							
Radius of Curvature (ft) 2	26.0 - 52.0 84.0							
h (ft/ft)	-							
M eander Wavelength (ft) 6	69.0 - 97.0 142.0							
atio	1.3 - 1.8 2.0							
Additional Reach Parameters								
Rosgen Classification	B4							
Channel Thalweg Length (ft)	465							
Sinuosity (ft)	1.13							
Water Surface Slope (Channel) (ft/ft)	0.0114							
Bankfull Slope (ft/ft)	0.0114							
Ri% / Ru% / P% / G% / S% 39.1%	9.1% - 65.6%							
N/A - Information does not apply.								


N/A - Information does not apply. Ri = Riffle / Ru = Run / P = Pool / G = Glide / S = Step ¹ Based on riffle and pool dimensions

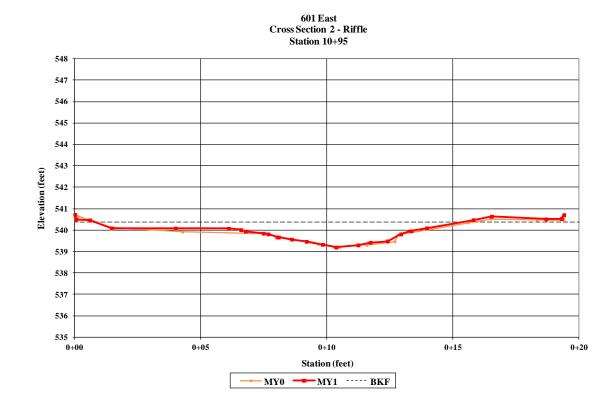
 $\label{eq:starting} \begin{array}{l} A = Rtifle / Ru = Run / P = Pool / G = Glide / S = Step \\ ^{1} Based on riffle and pool dimensions \\ ^{2} Based solely on riffle dimensions \end{array}$

Table 12. 601 East Stream Restoration Site Bank Pin Arrays									
		Length of Expo	sed Pin (mm)						
Cross Section #	Upstream	At Cross Section	Downstream	Rate ¹ (mm/yr)	Rate (ft/yr)				
1	0	0	0	0	0.00				
3	0	0^{B}	0^{B}	0	0.00				
5	0	0	0	0	0.00				
7	0	0	12.7 ²	6.8	0.02				
10	0^{B}	0^{B}	0^{B}	0	0.00				
12	0^{B}	0^{B}	0^{B}	0	0.00				
14	0^{B}	0	0^{B}	0	0.00				
15	0^{B}	0	0^{B}	0	0.00				
17	0	0 ^B	0	0	0.00				
0 ^B = Buried Bank Pin									

0[°]= Buried Bank Pin ¹ Rate based on 7.5 month span since installation

² Localized erosion caused by bent tip of bank pin

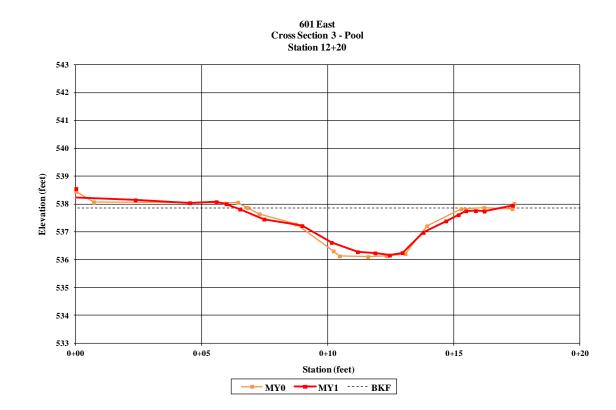
Left Descending Bank


Upstream

Right Descending Bank

Downstream

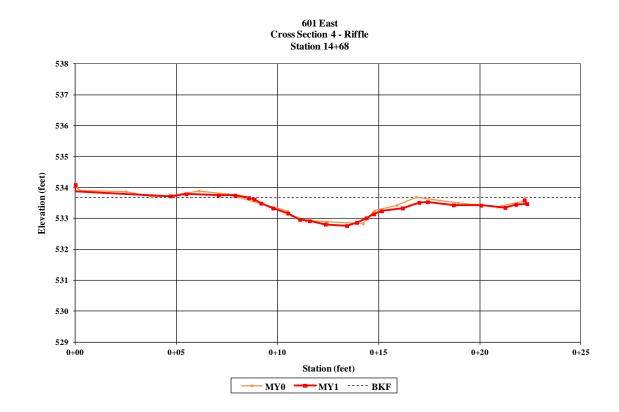
Left Descending Bank


Upstream

Right Descending Bank

Downstream

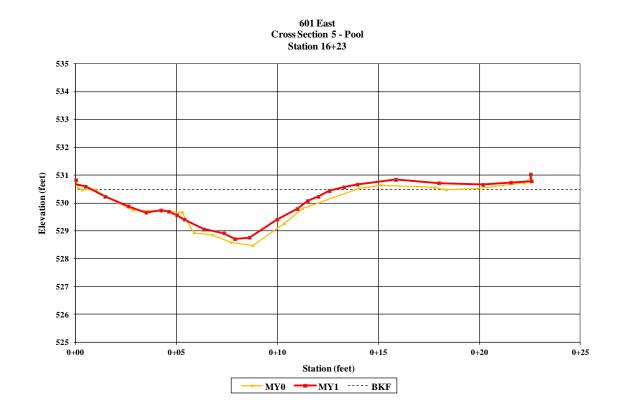
Left Descending Bank


Upstream

Right Descending Bank

Downstream

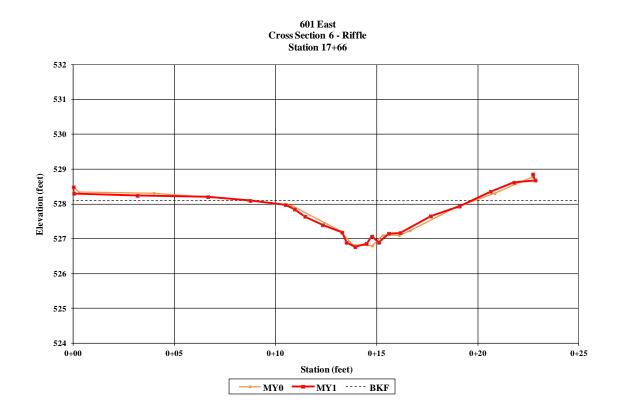
Upstream



Right Descending Bank

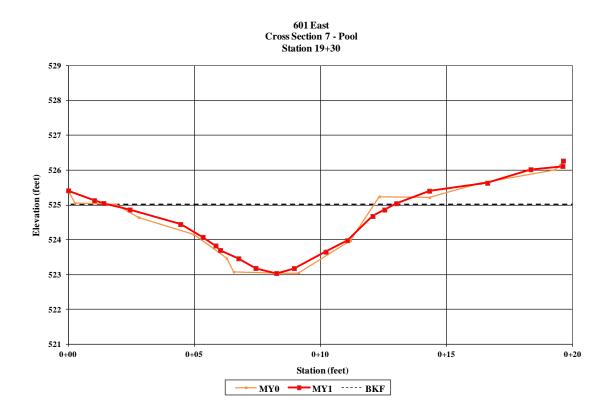
Downstream

601 East Stream Restoration Project NCDMS Project No. 95756 Monitoring Year 1 of 7


Upstream

Right Descending Bank

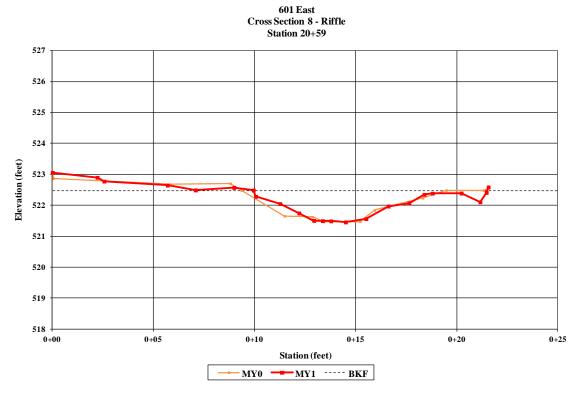
Downstream


Upstream

Right Descending Bank

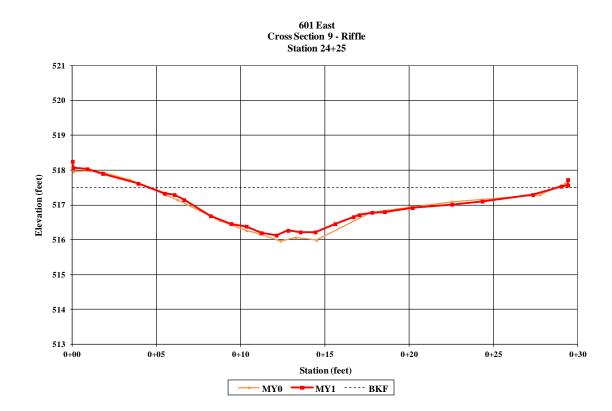
Downstream

Left Descending Bank


Upstream

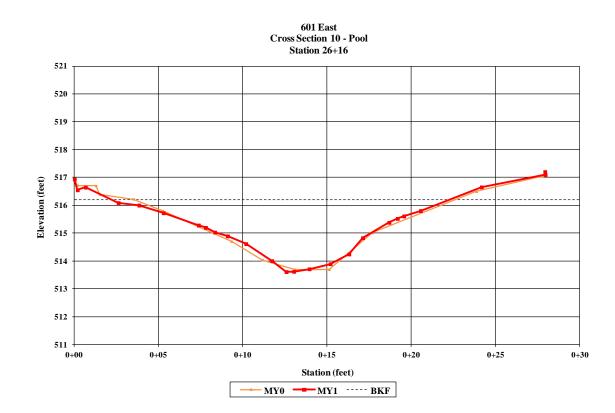
Right Descending Bank

Downstream


Upstream

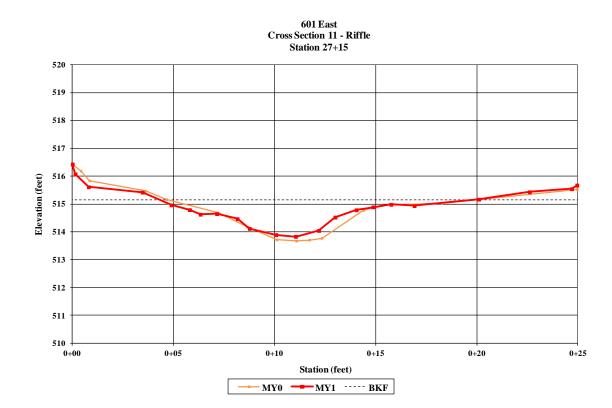
Right Descending Bank

Downstream


Upstream

Right Descending Bank

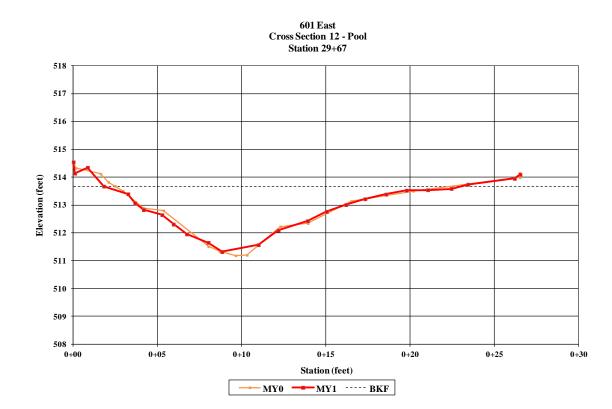
Downstream


Upstream

Right Descending bank

Downstream

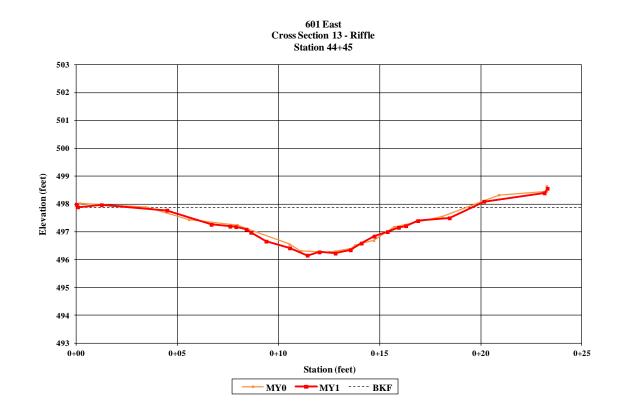
Left Descending Bank


Upstream

Right Descending Bank

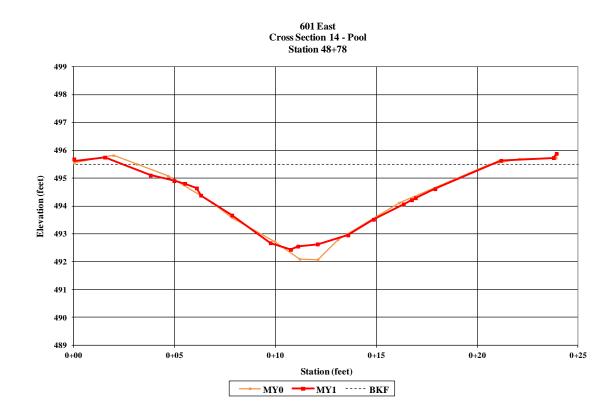
Downstream

Left Descending Bank


Upstream

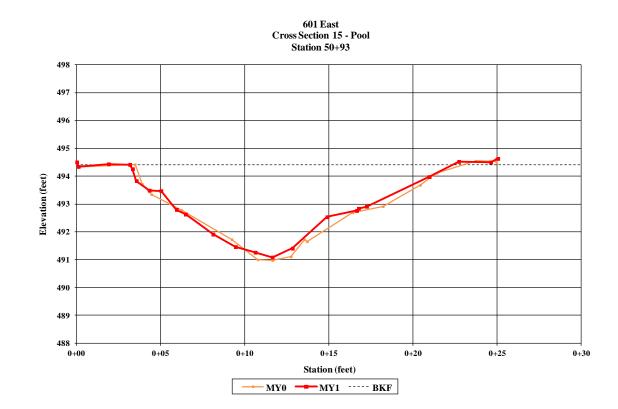
Right Descending Bank

Downstream


Upstream

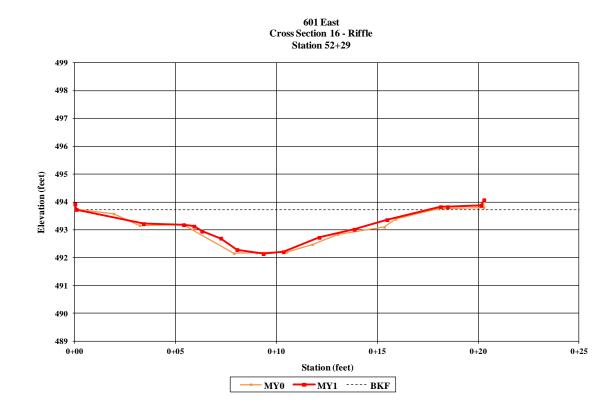
Right Descending Bank

Downstream


Upstream

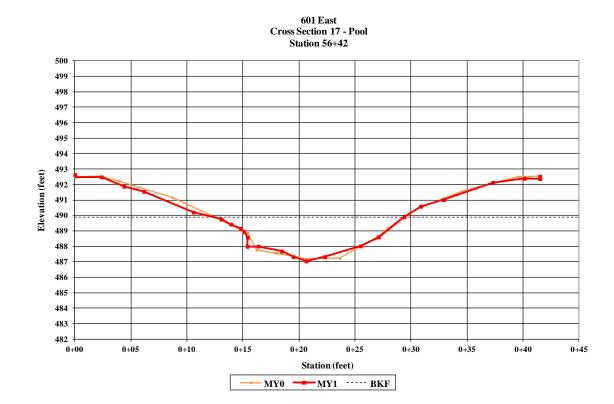
Right Descending Bank

Downstream


Upstream

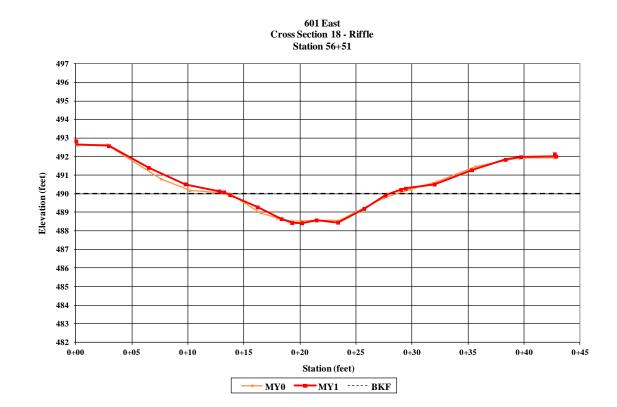
Right Descending Bank

Downstream


Upstream

Right Descending Bank

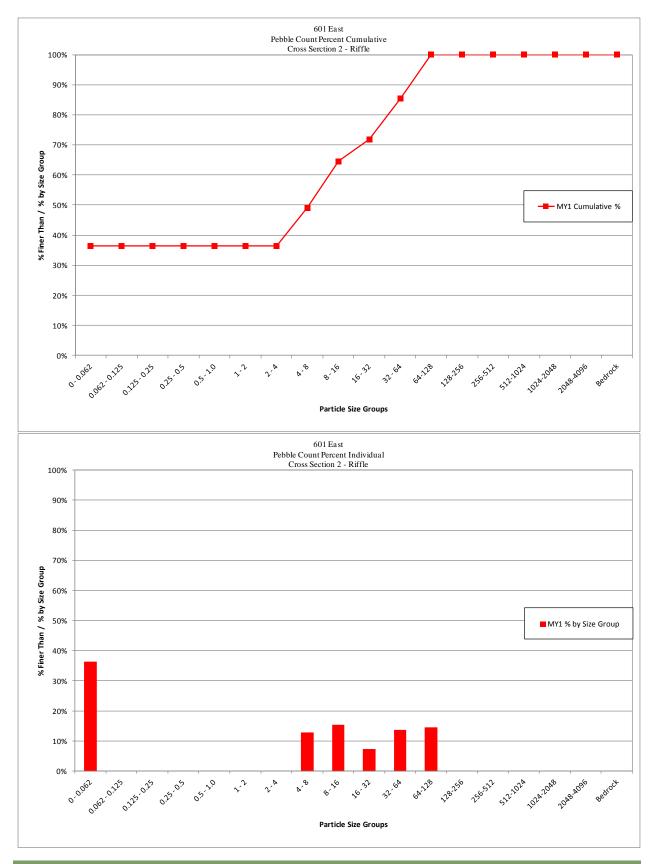
Downstream


Upstream

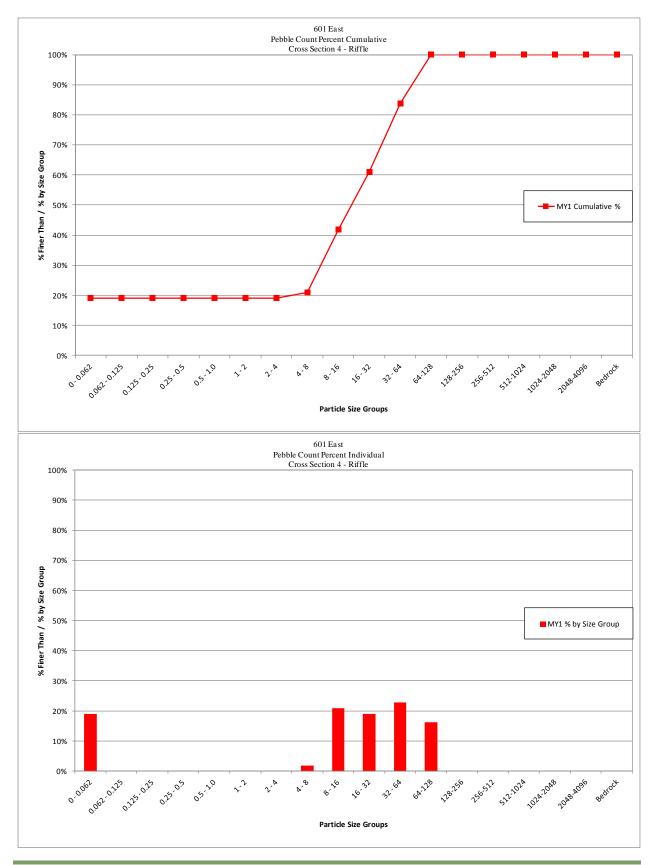
Right Descending Bank

Downstream

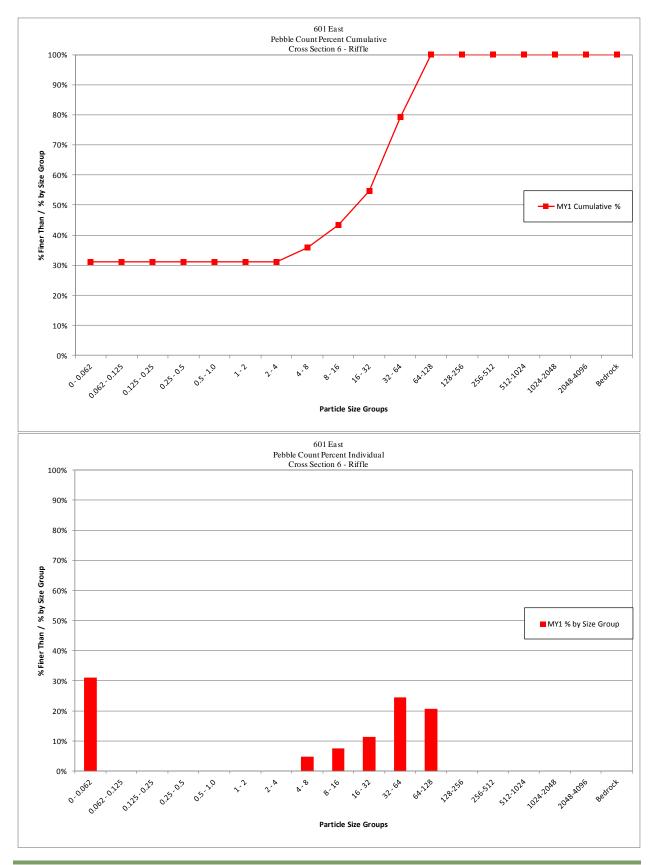
Upstream

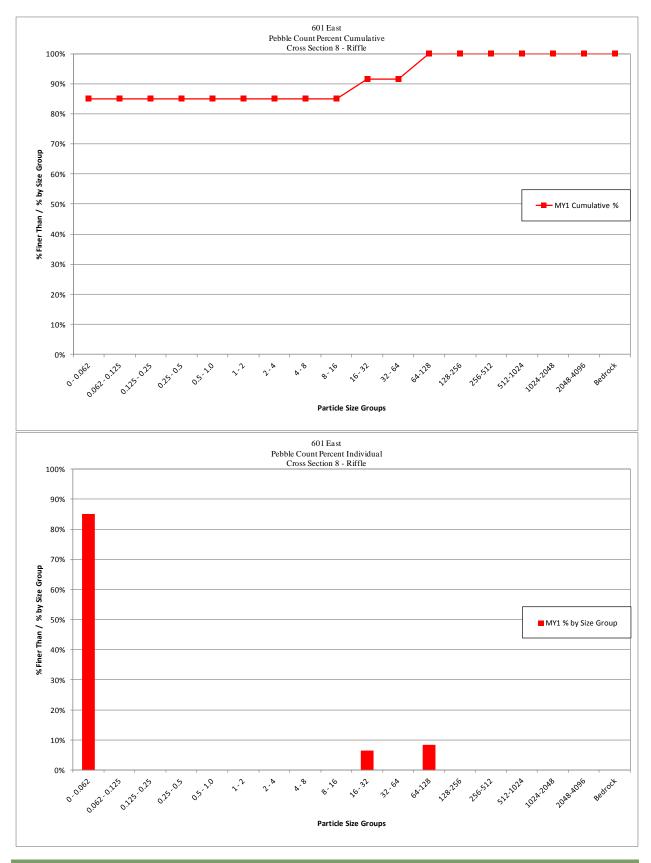


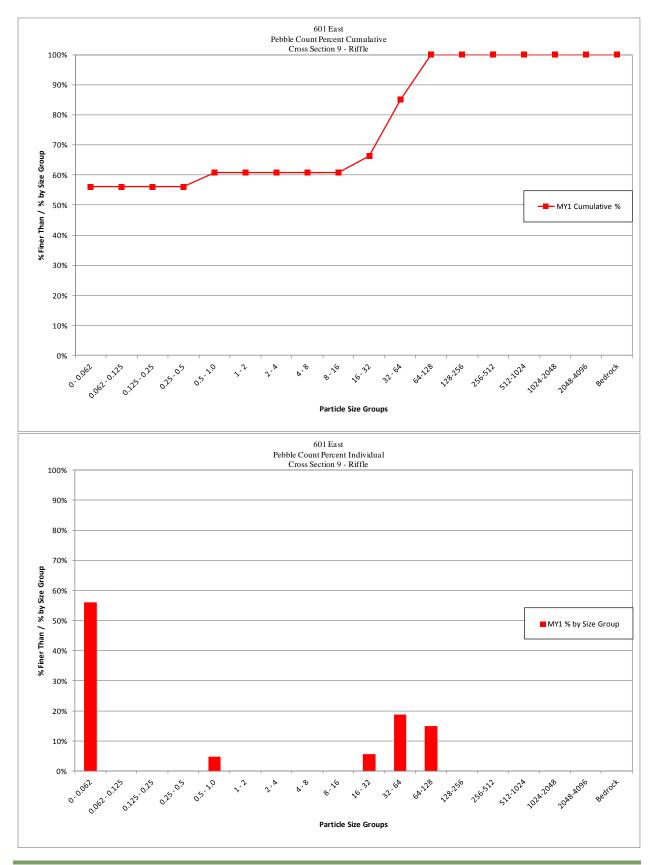
Right Descending Bank

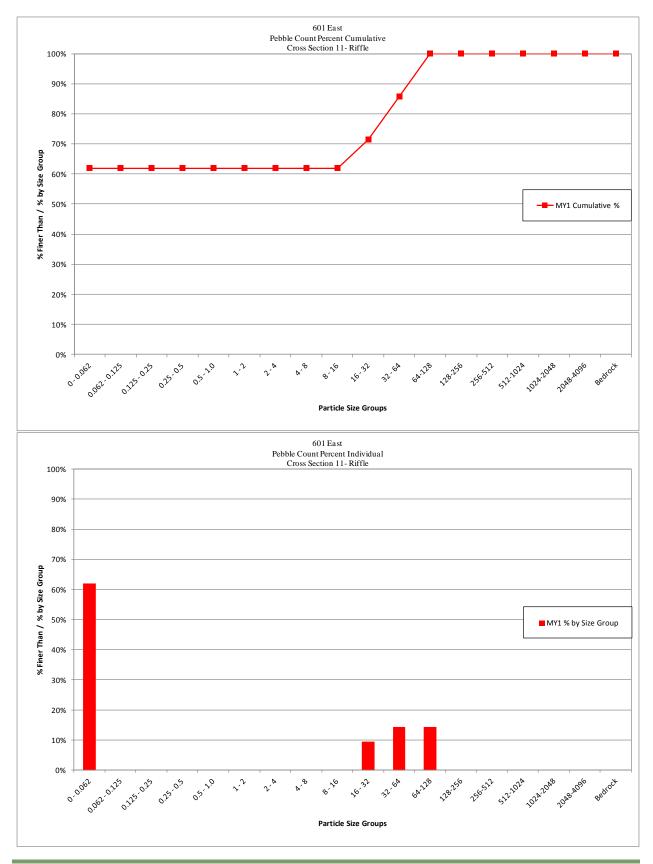


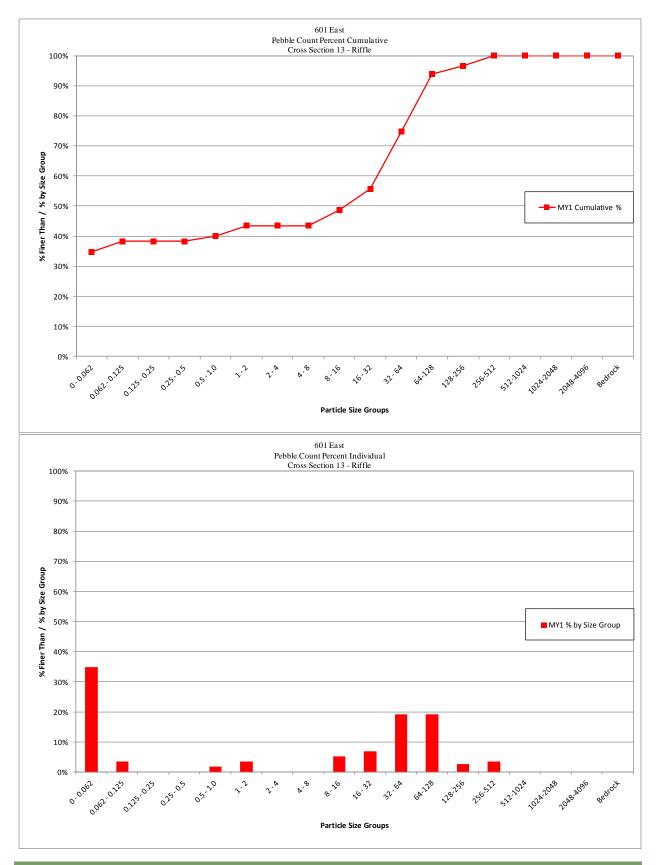
Downstream

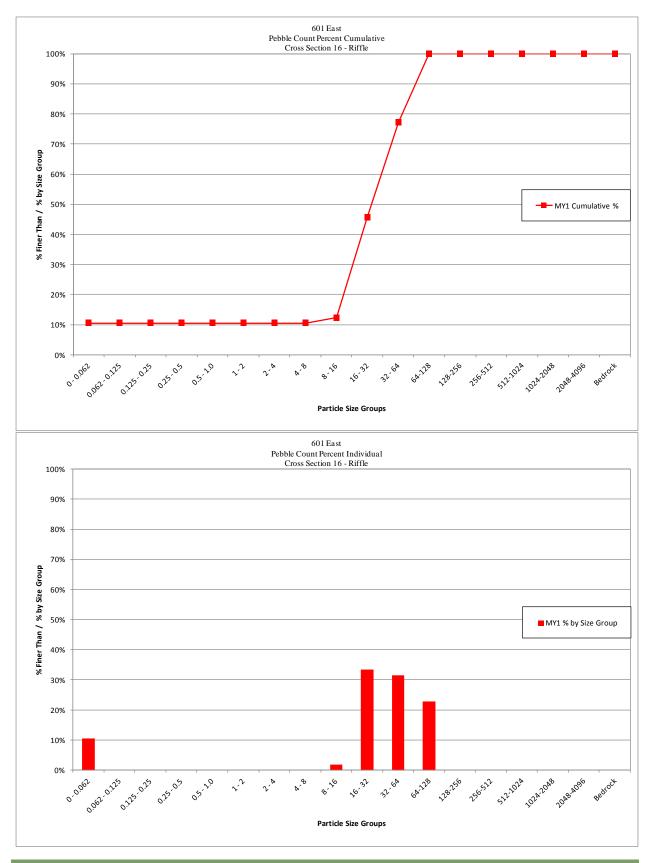

601 East					
Cross Section 2 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	40	36.4%	36%		
0.062 - 0.125	0	0.0%	36%		
0.125 - 0.25	0	0.0%	36%		
0.25 - 0.5	0	0.0%	36%		
0.5 - 1.0	0	0.0%	36%		
1 - 2	0	0.0%	36%		
2 - 4	0	0.0%	36%		
4 - 8	14	12.7%	49%		
8 - 16	17	15.5%	65%		
16 - 32	8	7.3%	72%		
32 - 64	15	13.6%	85%		
64-128	16	14.5%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	110	100%	100%		
Summary Data					
		D50	8.3		
		D84	60		
		D95	100		

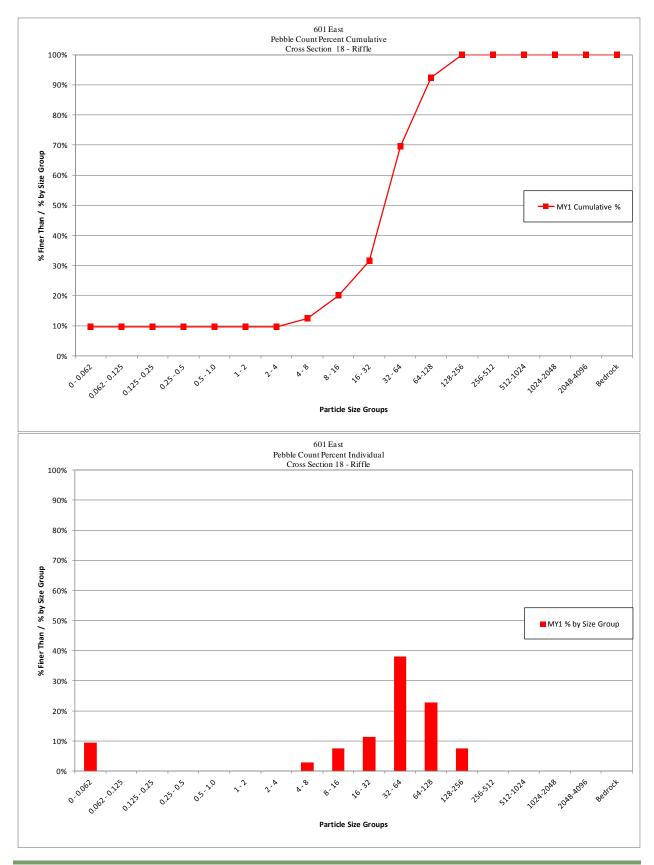

	601 East				
Cross Section 4 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	20	19.0%	19%		
0.062 - 0.125	0	0.0%	19%		
0.125 - 0.25	0	0.0%	19%		
0.25 - 0.5	0	0.0%	19%		
0.5 - 1.0	0	0.0%	19%		
1 - 2	0	0.0%	19%		
2 - 4	0	0.0%	19%		
4 - 8	2	1.9%	21%		
8 - 16	22	21.0%	42%		
16 - 32	20	19.0%	61%		
32 - 64	24	22.9%	84%		
64-128	17	16.2%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	105	100%	100%		
	•	Sumn	nary Data		
		D50	22		
D84 64					


601 East					
Cross Section 6 - Riffle					
Monitoring Year - 2015; MY1					
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	33	31.1%	31%		
0.062 - 0.125	0	0.0%	31%		
0.125 - 0.25	0	0.0%	31%		
0.25 - 0.5	0	0.0%	31%		
0.5 - 1.0	0	0.0%	31%		
1 - 2	0	0.0%	31%		
2 - 4	0	0.0%	31%		
4 - 8	5	4.7%	36%		
8 - 16	8	7.5%	43%		
16 - 32	12	11.3%	55%		
32 - 64	26	24.5%	79%		
64-128	22	20.8%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	106	100%	100%		
	•	Sumn	nary Data		
		D50	26		
D84 71					


601 East					
Cross Section 8 - Riffle					
Monitoring	y Year - 201	5; MY1			
Bed Surface Material %					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	91	85.0%	85%		
0.062 - 0.125	0	0.0%	85%		
0.125 - 0.25	0	0.0%	85%		
0.25 - 0.5	0	0.0%	85%		
0.5 - 1.0	0	0.0%	85%		
1 - 2	0	0.0%	85%		
2 - 4	0	0.0%	85%		
4 - 8	0	0.0%	85%		
8 - 16	0	0.0%	85%		
16 - 32	7	6.5%	92%		
32 - 64	0	0.0%	92%		
64-128	9	8.4%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	107	100%	100%		
	-	Sumn	nary Data		
		D50	0.062		
		D84	0.062		


601 East					
Cross Section 9 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	60	56.1%	56%		
0.062 - 0.125	0	0.0%	56%		
0.125 - 0.25	0	0.0%	56%		
0.25 - 0.5	0	0.0%	56%		
0.5 - 1.0	5	4.7%	61%		
1 - 2	0	0.0%	61%		
2 - 4	0	0.0%	61%		
4 - 8	0	0.0%	61%		
8 - 16	0	0.0%	61%		
16 - 32	6	5.6%	66%		
32 - 64	20	18.7%	85%		
64-128	16	15.0%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	107	100%	100%		
		Sumn	nary Data		
		D50	0.062		
D84 62					


601 East					
Cross Section 11 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material %					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	65	61.9%	62%		
0.062 - 0.125	0	0.0%	62%		
0.125 - 0.25	0	0.0%	62%		
0.25 - 0.5	0	0.0%	62%		
0.5 - 1.0	0	0.0%	62%		
1 - 2	0	0.0%	62%		
2 - 4	0	0.0%	62%		
4 - 8	0	0.0%	62%		
8 - 16	0	0.0%	62%		
16 - 32	10	9.5%	71%		
32 - 64	15	14.3%	86%		
64-128	15	14.3%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	105	100%	100%		
		Sumn	nary Data		
		D50	0.062		
D84 60					


601 East					
Cross Section 13 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	40	34.8%	35%		
0.062 - 0.125	4	3.5%	38%		
0.125 - 0.25	0	0.0%	38%		
0.25 - 0.5	0	0.0%	38%		
0.5 - 1.0	2	1.7%	40%		
1 - 2	4	3.5%	43%		
2 - 4	0	0.0%	43%		
4 - 8	0	0.0%	43%		
8 - 16	6	5.2%	49%		
16 - 32	8	7.0%	56%		
32 - 64	22	19.1%	75%		
64-128	22	19.1%	94%		
128-256	3	2.6%	97%		
256-512	4	3.5%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	115	100%	100%		
	•	Sumn	nary Data		
		D50	20		
D84 83					

601 East					
Cross Section 16 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material %					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	12	10.5%	11%		
0.062 - 0.125	0	0.0%	11%		
0.125 - 0.25	0	0.0%	11%		
0.25 - 0.5	0	0.0%	11%		
0.5 - 1.0	0	0.0%	11%		
1 - 2	0	0.0%	11%		
2 - 4	0	0.0%	11%		
4 - 8	0	0.0%	11%		
8 - 16	2	1.8%	12%		
16 - 32	38	33.3%	46%		
32 - 64	36	31.6%	77%		
64-128	26	22.8%	100%		
128-256	0	0.0%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	114	100%	100%		
		Sumn	nary Data		
		D50	34		
D84 76					

601 East					
Cross Section 18 - Riffle					
Monitoring	Monitoring Year - 2015; MY1				
Bed Surface Material%					
Particle Size Class (mm)	Number	Individual	Cumulative		
0 - 0.062	10	9.5%	10%		
0.062 - 0.125	0	0.0%	10%		
0.125 - 0.25	0	0.0%	10%		
0.25 - 0.5	0	0.0%	10%		
0.5 - 1.0	0	0.0%	10%		
1 - 2	0	0.0%	10%		
2 - 4	0	0.0%	10%		
4 - 8	3	2.9%	12%		
8 - 16	8	7.6%	20%		
16 - 32	12	11.4%	31%		
32 - 64	40	38.1%	70%		
64-128	24	22.9%	92%		
128-256	8	7.6%	100%		
256-512	0	0.0%	100%		
512-1024	0	0.0%	100%		
1024-2048	0	0.0%	100%		
2048-4096	0	0.0%	100%		
Bedrock	0	0.0%	100%		
Total	105	100%	100%		
	3	Sumn	nary Data		
		D50	47		
D84 110					

This Page Intentionally Left Blank

Appendix E Hydrologic Data

Table 13. Verification of Bankfull Events601 East Stream Restoration Site						
Date of Data Collection Date of Occurrence Method Feet Above Bankfull Elevation Photo # (if available)						
November - 2015	Unknown ¹	Crest Gauge/ Wrack Lines	Unknown	Figure 3/4/5		

¹Suspected bankfull date 9/30/2015

Figure 3. Photo Verification of Bankful Events

Wrack Lines Downstream of Crest Gauge on Reach 2

Figure 4. Photo Verification of Bankful Events

Reach 3 Crest Gauge

Figure 5. Photo Verification of Bankful Events

Wrack Lines Downstream of Crest Gauge on Reach 3

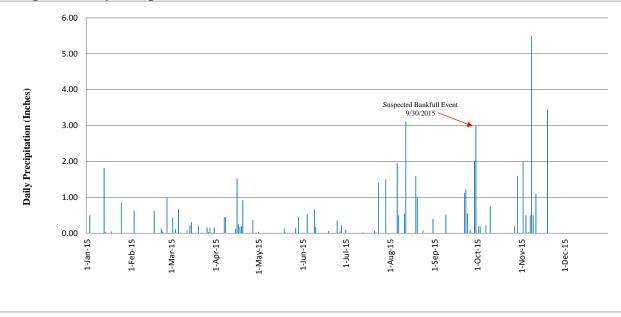
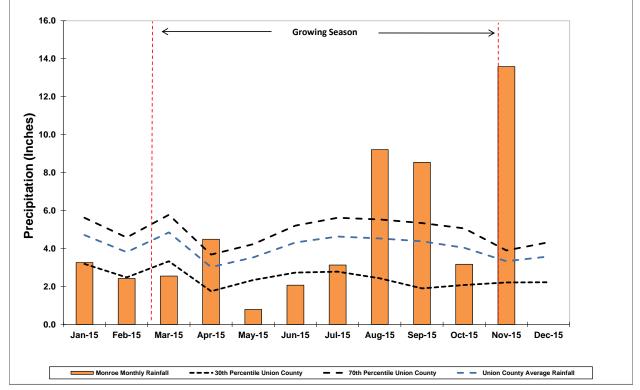



Figure 6. Daily Precipitation Totals for Monroe, NC (CRONOS Station 315771 Monroe 2 SE)

